Here we report for the first time the design and expression of highly charged, unfolded protein polymers based on elastin-like peptides (ELPs). Positively and negatively charged variants were achieved by introducing lysine and glutamic acid residues, respectively, within the repetitive pentapeptide units. Subsequently it was demonstrated that the monodisperse protein polyelectrolytes with precisely defined amino acid compositions, sequences, and stereochemistries can be transferred into superstructures exploiting their electrostatic interactions. Hollow capsules were assembled from oppositely charged protein chains by using the layer-by-layer technique. The structures of the capsules were analyzed by various microscopy techniques revealing the fabrication of multilayer containers. Due to their low toxicity in comparison to other polyelectrolytes, supercharged ELPs are appealing candidates for the construction of electrostatically induced scaffolds in biomedicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/marc.201000491 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!