In this manuscript, data demonstrating the magnetic sensitivity of human umbilical vein endothelial cells (HUVECs) is presented. The effects of low level fields (LLF; 0.2-1 µT), 30 and 120 µT magnetic fields on the proliferation of endothelial cells were investigated. Primary HUVECs were cultured and exposed to the distinct magnetic conditions in the same incubator. Although cell numbers were slightly affected between 30 and 120 µT magnetic fields, reducing the magnetic field to low levels clearly inhibited proliferation. The rationale of introducing LLF is to elucidate a possible mechanism of interaction. Small differences of 30 µT reduce endothelial cell numbers significantly. The addition of free radical scavenger superoxide dismutase suppressed the enhanced proliferation caused by 120 µT static magnetic fields. It is proposed that the static magnetic field interacts with endothelial cells via a free radical mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bem.20665 | DOI Listing |
Stem Cells Transl Med
December 2024
Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA 02111, United States.
The use of dental implants to replace lost or damaged teeth has become increasingly widespread due to their reported high survival and success rates. In reality, the long-term survival of dental implants remains a health concern, based on their short-term predicted survival of ~15 years, significant potential for jawbone resorption, and risk of peri-implantitis. The ability to create functional bioengineered teeth, composed of living tissues with properties similar to those of natural teeth, would be a significant improvement over currently used synthetic titanium implants.
View Article and Find Full Text PDFJ Craniofac Surg
December 2024
Division of Neurosurgery, Department of Surgery.
Cutaneous angiosarcoma is a rare and aggressive malignancy originating from endothelial cells lining blood vessels in the skin. The authors present a comprehensive case report of cutaneous angiosarcoma with infiltration of the scalp and skull, with an abnormal presentation highlighting the clinical features, diagnostic challenges, treatment and surgical strategies, and outcomes. The case underscores the complexity of managing this aggressive disease involving critical anatomical structures and emphasizes the need for a multidisciplinary approach to optimal patient care.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France.
The vegetal alkaloid toxin veratridine (VTD) is a selective voltage-gated Na (Na) channel activator, widely used as a pharmacological tool in vascular physiology. We have previously shown that Na channels, expressed in arteries, contribute to vascular tone in mouse mesenteric arteries (MAs). Here, we aimed to better characterize the mechanisms of action of VTD using mouse cecocolic arteries (CAs), a model of resistance artery.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Immunopathology Laboratory, Butantan Institute, São Paulo 05585-090, Brazil.
Jararhagin-C (JarC) is a protein from the venom of consisting of disintegrin-like and cysteine-rich domains. JarC shows a modulating effect on angiogenesis and remodeling of extracellular matrix constituents, improving wound healing in a mouse experimental model. JarC is purified from crude venom, and the yield is less than 1%.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
December 2024
Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
Purpose: This review explores the role of pigment epithelium-derived factor (PEDF) in retinal degenerative and vascular disorders and assesses its potential both as an adjunct to established vascular endothelial growth factor inhibiting treatments for retinal vascular diseases and as a neuroprotective therapeutic agent.
Methods: A comprehensive literature review was conducted, focusing on the neuroprotective and anti-angiogenic properties of PEDF. The review evaluated its effects on retinal health, its dysregulation in ocular disorders, and its therapeutic application in preclinical models.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!