A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Estimating standard errors for life expectancies based on complex survey data with mortality follow-up: A case study using the National Health Interview Survey Linked Mortality Files. | LitMetric

Life expectancy is an important measure for health research and policymaking. Linking individual survey records to mortality data can overcome limitations in vital statistics data used to examine differential mortality by permitting the construction of death rates based on information collected from respondents at the time of interview and facilitating estimation of life expectancies for subgroups of interest. However, use of complex survey data linked to mortality data can complicate the estimation of standard errors. This paper presents a case study of approaches to variance estimation for life expectancies based on life tables, using the National Health Interview Survey Linked Mortality Files. The approaches considered include application of Chiang's traditional method, which is straightforward but does not account for the complex design features of the data; balanced repeated replication (BRR), which is more complicated but accounts more fully for the design features; and compromise, 'hybrid' approaches, which can be less difficult to implement than BRR but still account partially for the design features. Two tentative conclusions are drawn. First, it is important to account for the effects of the complex sample design, at least within life-table age intervals. Second, accounting for the effects within age intervals but not across age intervals, as is done by the hybrid methods, can yield reasonably accurate estimates of standard errors, especially for subgroups of interest with more homogeneous characteristics among their members.

Download full-text PDF

Source
http://dx.doi.org/10.1002/sim.4219DOI Listing

Publication Analysis

Top Keywords

standard errors
12
life expectancies
12
linked mortality
12
design features
12
age intervals
12
expectancies based
8
complex survey
8
survey data
8
case study
8
national health
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!