Previous work has proposed that simple geometric shapes, carrying the features present within negative or threatening faces are especially effective at capturing or guiding attention. Here we test this account and provide converging evidence for a threat-based attentional advantage. Experiment 1 found that downward-pointing triangles continue to be detected more efficiently than upward-pointing triangles when: (i) both overall RT and search slope measures are obtained; and (ii) when the set size is varied and the stimuli are presented in random configurations. Experiment 2 tested and ruled out an alternative account of the selection advantage, based on differences between triangle shape consistencies with scene perspective cues. Overall, the data provide converging evidence that simple geometric shapes, which might be particularly important in providing emotional signals in faces, can also attract attention preferentially even when presented outside of a face context.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/02699931.2010.525861 | DOI Listing |
Biomed Phys Eng Express
January 2025
Physics Department, University at Albany, 1400 Washington Ave, Albany, New York, 12222-0100, UNITED STATES.
Conventional x-ray radiography relies on attenuation differences in the object, which often results in poor contrast in soft tissues. X-ray phase imaging has the potential to produce higher contrast but can be difficult to utilize. Instead of grating-based techniques, analyzer-based imaging, also known as diffraction enhanced imaging (DEI), uses a monochromator crystal with an analyzer crystal after the object.
View Article and Find Full Text PDFSci Rep
January 2025
Computational Fluid Dynamics Laboratory, School of Mechanical Engineering, VIT, Vellore, 632014, India.
Stenosis causes the narrowing of arteries due to plaque buildup, which impedes blood flow and affects flow dynamics. This work numerically analyzes flow fluctuations in stenosed arteries under realistic physiological conditions (resting and exercise) and external body acceleration. The artery is inclined at angle , and blood rheology is modeled using a generalized power-law fluid.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Engineering and Innovation, The Open University, Milton Keynes MK7 6AA, UK.
A simple pore microstructure of parallel, identical, and inclined smooth-walled slits in a rigid solid, for which prediction of its geometrical and acoustic properties is straightforward, can yield useful sound absorption. This microstructure should be relatively amenable to 3D printing. Discrepancies between measurements and predictions of normal incidence sound absorption spectra of 3D printed vertical and slanted slit pore samples have been attributed to the rough surfaces of the slit walls and uneven slit cross-sections perpendicular to the printing direction.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China.
Developing switchable and multifunctional metasurfaces is essential for high-integration photonics. However, most previous studies encountered challenges such as limited degrees of freedom, simple tuning of predefined functionality, and complicated control systems. Here, we develop a general strategy to construct switchable and multifunctional metasurfaces.
View Article and Find Full Text PDFActa Histochem
January 2025
School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK.
In recent years, a great interest has been focused on the prebiotic origin of nucleic acids and life on Earth. An attractive idea is that life was initially based on an autocatalytic and autoreplicative RNA (the RNA-world). RNA duplexes are right-handed helical chains with antiparallel orientation, but the rationale for these features is not yet known.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!