Antibody-mediated delivery of siRNAs for anti-HIV therapy.

Methods Mol Biol

Department of Biomedical Sciences, Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA.

Published: July 2011

RNA interference (RNAi) is a potent and specific gene silencing mechanism that utilizes small -double-stranded RNA intermediates (small interfering RNAs or siRNAs) to target homologous mRNA sequences for degradation. The therapeutic potential of RNAi for HIV infection has been demonstrated in many studies. However, successful clinical application of RNAi is contingent on developing practical strategies to deliver siRNA to the desired target cells and tissues. Recently, there has been significant progress towards developing reagents that selectively deliver exogenous siRNA to immune cells that are targeted by HIV or involved in viral pathogenesis, such as T cells, macrophages, and dendritic cells. Here, we describe details of two antibody-based strategies for systemic delivery of siRNA either specifically to T cells via the CD7 receptor or to multiple immune cell types via LFA-1, present on all leukocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-61779-037-9_21DOI Listing

Publication Analysis

Top Keywords

cells
5
antibody-mediated delivery
4
delivery sirnas
4
sirnas anti-hiv
4
anti-hiv therapy
4
therapy rna
4
rna interference
4
interference rnai
4
rnai potent
4
potent specific
4

Similar Publications

Background: Impairment of the visceral pleura following thoracic surgery often leads to air leaks and intrathoracic adhesions. For preventing such complications, mesothelial cell proliferation at the pleural defects can be effective. To develop new materials for pleural defects restoration, we constructed a hybrid artificial pleural tissue (H-APLT) combining polyglycolic acid (PGA) nanofiber sheets with a three-dimensional culture of mesothelial cells and fibroblasts and evaluated its therapeutic efficacy in a rat pleural defect model.

View Article and Find Full Text PDF

We study the influence of electrical biasing on the modification of the chemical composition and electrical performance of perovskite solar cells (PSCs) by coupling electrochemical impedance spectroscopy (EIS) and scanning transmission X-ray microscopy (STXM) techniques. EIS reveals the formation of charge accumulation at the interfaces and changes in the resistive and capacitive properties. STXM study on PSCs after applying a strong electric field for a long biasing time indicates the breakdown of methylammonium (MA) cation, promoting iodide ions to migrate and create defects at the interface.

View Article and Find Full Text PDF

Flexible tactile sensors have received significant attention for use in wearable applications such as robotics, human-machine interfaces, and health monitoring. However, conventional tactile sensors face challenges in accurately measuring pressure because vertical deformation is induced by Poisson's ratio in situations where lateral strain is applied. This study shows a strain-insensitive flexible tactile sensor array without the crosstalk effect using a highly stretchable mesh.

View Article and Find Full Text PDF

Land plants alternate between asexual sporophytes and sexual gametophytes. Unlike seed plants, ferns develop free-living gametophytes. Gametophytes of the model fern Ceratopteris exhibit two sex types: hermaphrodites with pluripotent meristems and males lacking meristems.

View Article and Find Full Text PDF

Autologous hematopoietic stem cell transplantation is used to restore bone marrow function after high-dose chemotherapy. For apheresis, granulocyte colony-stimulating factor (G-CSF) is standard of care, but obtaining sufficient stem cells can be challenging. Other mobilization agents include plerixafor and PEGylated G-CSF (PEG-G-CSF).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!