RNAi and cellular miRNAs in infections by mammalian viruses.

Methods Mol Biol

Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.

Published: July 2011

MicroRNAs (miRNAs) play an essential role in the regulation of eukaryotic gene expression. Recent studies demonstrate that miRNAs can also strongly affect the replication of pathogenic viruses. For example, cellular miRNAs can target and repress the expression of viral mRNAs, but there is also at least one example of a cellular miRNA that stimulates virus replication. Furthermore, viruses can encode their own miRNAs, trigger changes in cellular miRNA expression or encode RNA silencing suppressor factors that inhibit cellular miRNAs. These interactions together form a complex regulatory network that controls both viral and host gene expression, which ultimately determines the outcome of viral infection at the cellular level and disease progression in the host. Here, we summarize the literature data on such virus-cell interactions in mammals and discuss how miRNAs can be used as research tools or targets in the development of novel antiviral therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7120436PMC
http://dx.doi.org/10.1007/978-1-61779-037-9_2DOI Listing

Publication Analysis

Top Keywords

cellular mirnas
12
gene expression
8
example cellular
8
cellular mirna
8
mirnas
7
cellular
5
rnai cellular
4
mirnas infections
4
infections mammalian
4
mammalian viruses
4

Similar Publications

MiRNAs: main players of cancer drug resistance target ABC transporters.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.

Chemotherapy remains the cornerstone of cancer treatment; however, its efficacy is frequently compromised by the development of chemoresistance. Multidrug resistance (MDR), characterized by the refractoriness of cancer cells to a wide array of chemotherapeutic agents, presents a significant barrier to achieving successful and sustained cancer remission. One critical factor contributing to this chemoresistance is the overexpression of ATP-binding cassette (ABC) transporters.

View Article and Find Full Text PDF

MircoRNAs predict and modulate responses to chemotherapy in leukemic patients.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Oral Biology Department, Faculty of Dentistry, Galala Plateau, Galala University, 15888), Attaka, Suez Governorate, Egypt.

Leukemia covers a broad category of cancer malignancies that specifically affect bone marrow and blood cells. While different kinds of leukemia have been identified, effective treatments are still lacking for most forms, and even those treatments considered effective can lead to relapses. MicroRNAs, or miRNAs, are short endogenous non-coding single-stranded RNAs that help control the epigenetics of gene expression.

View Article and Find Full Text PDF

Delayed wound closure is a significant hallmark associated with diabetes. A previous study from our laboratory identified decreased levels of Dicer and miRNAs together with altered levels of wound healing genes in the wounded tissues of diabetic rats. Comprehensive regulators of these wound healing genes mapped onto the PRC2 (polycomb repressive complex 2) complex.

View Article and Find Full Text PDF

Docetaxel (DTX) is widely utilized in breast cancer treatment. However, cancer cell resistance has limited its anti-tumor efficacy. Some molecules called microRNAs (miRNAs), acting like fine-tuned switches, can influence how breast cancer develops and spreads.

View Article and Find Full Text PDF

The CDKN2A gene, responsible for encoding the tumor suppressors p16(INK4A) and p14(ARF), is frequently inactivated in non-small cell lung cancer (NSCLC). Herein, an uncharacterized long non-coding RNA (lncRNA) (ENSG00000267053) on chromosome 19p13.12 was found to be overexpressed in NSCLC cells with an active, wild-type CDKN2A gene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!