We demonstrate that interferometric lithography offers a fast, simple route to nanostructured self-assembled monolayers of alkylphosphonates on the native oxide of titanium. Exposure at 244 nm using a Lloyd's mirror interferometer caused the spatially periodic photocatalytic degradation of the adsorbates, yielding nanopatterns that extended over square centimetre areas. Exposed regions were re-functionalised by a second, contrasting alkylphosphonate, and the resulting patterns were used as templates for the assembly of molecular nanostructures; we demonstrate the fabrication of lines of polymer nanoparticles 46 nm wide. Nanopatterned monolayers were also employed as resists for etching of the metal film. Wires were formed with widths that could be varied between 46 and 126 nm simply by changing the exposure time. Square arrays of Ti dots as small as 35 nm (λ/7) were fabricated using two orthogonal exposures followed by wet etching.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c0nr00994fDOI Listing

Publication Analysis

Top Keywords

self-assembled monolayers
8
interferometric lithography
8
large area
4
area nanopatterning
4
nanopatterning alkylphosphonate
4
alkylphosphonate self-assembled
4
monolayers titanium
4
titanium oxide
4
oxide surfaces
4
surfaces interferometric
4

Similar Publications

Electrochemical capacitance-based aptasensor for HER2 detection.

Biomed Microdevices

January 2025

Department of Physics, Faculty of Philosophy, Science and Letter, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil.

The overexpression of Human Epidermal Growth Factor Receptor 2 (HER2) protein is specifically related to tumor cell proliferation in breast cancers. Its presence in biological serum samples indicates presence or progression of cancer, becoming a promise biomarker. However, their detection needs a simple and high accuracy platform.

View Article and Find Full Text PDF

Proteases are overexpressed at various stages of conditions such as cancers and thus can serve as biomarkers for disease diagnosis. Electrochemical techniques to detect the activity of extracellular proteases have gained attraction due to their multiplexing capability. Here we employ an electrochemical approach based on a 3 × 3 gold (Au) microelectrode array (MEA) functionalized with (2-aminoethyl)ferrocene (AEF) tagged specific peptide substrates to monitor cathepsin B (CB) protease activity.

View Article and Find Full Text PDF

Electrochemical aptamer-based (EAB) sensors are a molecular measurement platform that enables the continuous, real-time measurement of a wide range of drugs and biomarkers in situ in the living body. EAB sensors are fabricated by depositing a thiol-modified, target-binding aptamer on the surface of a gold electrode, followed by backfilling with an alkanethiol to form a self-assembled monolayer. And while the majority of previously described EAB sensors have employed hydroxyl-terminated monolayers, a handful of studies have shown that altering the monolayer headgroup can strongly affect sensor performance.

View Article and Find Full Text PDF

Chitosan is a versatile bioactive polysaccharide in various industries, such as pharmaceuticals and environmental applications, owing to its abundance, biodegradability, biocompatibility, and antibacterial properties. To effectively harness its potential for various purposes, it is crucial to understand the mechanisms of its interaction in water. This study investigates the interactions between high molecular weight (HMW, >150 kDa) chitosan and four different functionalized self-assembled monolayers (SAMs) at three different pHs (3.

View Article and Find Full Text PDF

Enhancing efficiency and stability in perovskite solar cells: innovations in self-assembled monolayers.

Front Chem

January 2025

Key laboratory of Rubber-Plastic of Ministry of Education /Shandong Province (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China.

Perovskite solar cells (PVSCs) show remarkable potential due to their high-power conversion efficiencies and scalability. However, challenges related to stability and long-term performance remain significant. Self-assembled monolayers (SAMs) have emerged as a crucial solution, enhancing interfacial properties, facilitating hole extraction, and minimizing non-radiative recombination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!