The trimethylguanosine cap structure of U1 snRNA is a component of a bipartite nuclear targeting signal.

Cell

European Molecular Biology Laboratory, Heidelberg, Federal Republic of Germany.

Published: August 1990

The ability of series of U1 snRNAs and U6 snRNAs to migrate into the nucleus of Xenopus oocytes after injection into the cytoplasm was analyzed. The U snRNAs were made either by injecting U snRNA genes into the nucleus of oocytes or, synthetically, by T7 RNA polymerase, incorporating a variety of cap structures. The results indicate that nuclear targeting of U1 snRNA requires both a trimethylguanosine cap structure and binding of at least one common U snRNP protein. Using synthetic U6 snRNAs, it is further demonstrated that the trimethylguanosine cap structure can act in nuclear targeting in the absence of the common U snRNP proteins. These results imply that U snRNP nuclear targeting signals are of a modular nature.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0092-8674(90)90021-6DOI Listing

Publication Analysis

Top Keywords

nuclear targeting
16
trimethylguanosine cap
12
cap structure
12
common snrnp
8
structure snrna
4
snrna component
4
component bipartite
4
nuclear
4
bipartite nuclear
4
targeting
4

Similar Publications

Metabolomic in severe traumatic brain injury: exploring primary, secondary injuries, diagnosis, and severity.

Crit Care

January 2025

Department of Critical Care Medicine, Cumming School of Medicine, Health Research Innovation Center (HRIC), University of Calgary, Room 4C64, 3280 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada.

Background: Traumatic brain injury (TBI) is a major public health concern worldwide, contributing to high rates of injury-related death and disability. Severe traumatic brain injury (sTBI), although it accounts for only 10% of all TBI cases, results in a mortality rate of 30-40% and a significant burden of disability in those that survive. This study explored the potential of metabolomics in the diagnosis of sTBI and explored the potential of metabolomics to examine probable primary and secondary brain injury in sTBI.

View Article and Find Full Text PDF

Exploring TNFR1: from discovery to targeted therapy development.

J Transl Med

January 2025

School of Medicine, Shanghai Baoshan Luodian Hospital, Shanghai University, Shanghai, 201908, China.

This review seeks to elucidate the therapeutic potential of tumor necrosis factor receptor 1 (TNFR1) and enhance our comprehension of its role in disease mechanisms. As a critical cell-surface receptor, TNFR1 regulates key signaling pathways, such as nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK), which are associated with pro-inflammatory responses and cell death. The intricate regulatory mechanisms of TNFR1 signaling and its involvement in various diseases, including inflammatory disorders, infectious diseases, cancer, and metabolic syndromes, have attracted increasing scholarly attention.

View Article and Find Full Text PDF

Donor-derived GD2-specific CAR T cells in relapsed or refractory neuroblastoma.

Nat Med

January 2025

Department of Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Bambino Gesù Children's Hospital, Rome, Italy.

Allogeneic chimeric antigen receptor (CAR) T cells targeting disialoganglioside-GD2 (ALLO_GD2-CART01) could be a therapeutic option for patients with relapsed or refractory, high-risk neuroblastoma (r/r HR-NB) whose tumors did not respond to autologous GD2-CART01 or who have profound lymphopenia. We present a case series of five children with HR-NB refractory to more than three different lines of therapy who received ALLO_GD2-CART01 in a hospital exemption setting. Four of them had previously received allogeneic hematopoietic stem cell transplantation.

View Article and Find Full Text PDF

The remarkable diversity of insect pigmentation offers a captivating avenue for studying evolution and genetics. In tephritids, understanding the molecular basis of mutant traits is also crucial for applied entomology, enabling the creation of genetic sexing strains through genome editing, thus facilitating sex-sorting before sterile insect releases. Here, we present evidence from classical and modern genetics showing that the black pupae (bp) phenotype in the GUA10 strain of Anastrepha ludens is caused by a large deletion at the ebony locus, removing the gene's entire coding region.

View Article and Find Full Text PDF

The cytotoxic mechanisms of thymidylate synthase inhibitors, such as the multitarget antifolate pemetrexed, are not yet fully understood. Emerging evidence indicates that combining pemetrexed with histone deacetylase inhibitors (HDACi) may enhance therapeutic efficacy in non-small cell lung cancer (NSCLC). To explore this further, A549 NSCLC cells were treated with various combinations of pemetrexed and the HDACi MS275 (Entinostat), and subsequently assessed for cell viability, cell cycle changes, and genotoxic markers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!