Fatty acids (FA) are bioactive molecules which have potential as adjunctive chemotherapeutic agents. FA are classified as short-, medium; or long-chain on the basis of the number of carbon atoms in the aliphatic chain and have been reported to induce apoptosis in vitro in a range of cancer cell types, including breast, tongue, cervix and colorectal. However, to date the chain length exerting optimal anti-neoplastic properties remains undefined. Short chain fatty acids, such as butyrate (C4:0), have induced high rates of in vitro apoptosis, presumably related to epigenetic modification, cell cycle arrest and activation of pro-apoptotic genes. Medium chain fatty acids have demonstrated in vivo and in vitro cytotoxic and anti-microbial properties; however, scant evidence currently exists on their anti-neoplastic potential. Longer unsaturated fatty acids (C16-24: ω3-9), including conjugated linoleic acid and eicosapentaenoic acid, also exhibit in vitro anti-proliferative actions, including induction of oxidative stress and modification of intracellular signalling pathways. Although incorporation of FA into CRC chemotherapy regimens is in its infancy, evidence is accumulating to allow identification of the FA chain length capable of exerting the most effective anti-neoplastic activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4161/cbt.11.8.15281 | DOI Listing |
Int J Syst Evol Microbiol
January 2025
Department of Life Sciences, University of Coimbra, CEMMPRE, ARISE, Coimbra, Portugal.
Three bacterial strains, designated FZUC8N2.13, FBOR7N2.3 and FZUR7N2.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
Six Gram-stain-positive and rod-shaped strains, designated FJAT-51614, FJAT-51639, FJAT-52054, FJAT-52991, FJAT-53654 and FJAT-53711, were isolated from a mangrove ecosystem. The condition for growth among the strains varied (pH ranging 5.0-11.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315800, PR China.
Two Gram-stain-negative, curved-rod-shaped, non-motile and aerobic bacteria W6 and I13 were isolated from marine sediment samples collected from Meishan Island located in the East China Sea. Catalase and oxidase activities and hydrolysis of Tween 40, 60 and 80 were positive for both strains, while nitrate reduction, indole production, methyl red reaction and HS production were negative. Phylogenetic analyses based on 16S rRNA and genome sequences revealed that strains W6 and I13 formed distinct phylogenetic lineages within the genera and , respectively.
View Article and Find Full Text PDFAntonie Van Leeuwenhoek
January 2025
Institute of Plant Science and Resources, Okayama University, Okayama, Japan.
A Gram-stain-negative, rod-shaped, non-motile, aerobic, light-yellow-pigmented bacterium, designated as strain Y10, was isolated from Lumnitzera racemosa leaf in Iriomote island mangrove forests in Japan. The 16S rRNA gene sequence analysis revealed that the isolate Y10 was affiliated with the family Flavobacteriaceae, and the sequence showed the highest sequence identity to that of Neptunitalea chrysea NBRC 110019 (97.2%) and others with below 96% sequence identity.
View Article and Find Full Text PDFTrop Anim Health Prod
January 2025
Department of Agroindustrial Science and Technology, Federal University of Pelotas, Rio Grande Do Sul, Brazil.
During the harvest of Ilex paraguariensis, approximately 2-5 tons per hectare of thick stems are left on the soil surface. The outer portion of these stems, referred to as the coproduct, constitutes 30% of the total residue mass. Although this coproduct has been partially characterized in terms of its phytochemical profile, its technological applications remain unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!