Fatty acids as potential adjunctive colorectal chemotherapeutic agents.

Cancer Biol Ther

School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, Australia.

Published: April 2011

Fatty acids (FA) are bioactive molecules which have potential as adjunctive chemotherapeutic agents. FA are classified as short-, medium; or long-chain on the basis of the number of carbon atoms in the aliphatic chain and have been reported to induce apoptosis in vitro in a range of cancer cell types, including breast, tongue, cervix and colorectal. However, to date the chain length exerting optimal anti-neoplastic properties remains undefined. Short chain fatty acids, such as butyrate (C4:0), have induced high rates of in vitro apoptosis, presumably related to epigenetic modification, cell cycle arrest and activation of pro-apoptotic genes. Medium chain fatty acids have demonstrated in vivo and in vitro cytotoxic and anti-microbial properties; however, scant evidence currently exists on their anti-neoplastic potential. Longer unsaturated fatty acids (C16-24: ω3-9), including conjugated linoleic acid and eicosapentaenoic acid, also exhibit in vitro anti-proliferative actions, including induction of oxidative stress and modification of intracellular signalling pathways. Although incorporation of FA into CRC chemotherapy regimens is in its infancy, evidence is accumulating to allow identification of the FA chain length capable of exerting the most effective anti-neoplastic activity.

Download full-text PDF

Source
http://dx.doi.org/10.4161/cbt.11.8.15281DOI Listing

Publication Analysis

Top Keywords

fatty acids
20
potential adjunctive
8
chemotherapeutic agents
8
chain length
8
chain fatty
8
fatty
5
chain
5
acids potential
4
adjunctive colorectal
4
colorectal chemotherapeutic
4

Similar Publications

Three bacterial strains, designated FZUC8N2.13, FBOR7N2.3 and FZUR7N2.

View Article and Find Full Text PDF

Description of six novel species sp. nov., sp. nov., sp. nov., sp. nov., sp. nov. and sp. nov., isolated from mangrove ecosystem.

Int J Syst Evol Microbiol

January 2025

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.

Six Gram-stain-positive and rod-shaped strains, designated FJAT-51614, FJAT-51639, FJAT-52054, FJAT-52991, FJAT-53654 and FJAT-53711, were isolated from a mangrove ecosystem. The condition for growth among the strains varied (pH ranging 5.0-11.

View Article and Find Full Text PDF

sp. nov. and sp. nov., two bacteria isolated from marine sediment in the East China Sea.

Int J Syst Evol Microbiol

January 2025

Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315800, PR China.

Two Gram-stain-negative, curved-rod-shaped, non-motile and aerobic bacteria W6 and I13 were isolated from marine sediment samples collected from Meishan Island located in the East China Sea. Catalase and oxidase activities and hydrolysis of Tween 40, 60 and 80 were positive for both strains, while nitrate reduction, indole production, methyl red reaction and HS production were negative. Phylogenetic analyses based on 16S rRNA and genome sequences revealed that strains W6 and I13 formed distinct phylogenetic lineages within the genera and , respectively.

View Article and Find Full Text PDF

A Gram-stain-negative, rod-shaped, non-motile, aerobic, light-yellow-pigmented bacterium, designated as strain Y10, was isolated from Lumnitzera racemosa leaf in Iriomote island mangrove forests in Japan. The 16S rRNA gene sequence analysis revealed that the isolate Y10 was affiliated with the family Flavobacteriaceae, and the sequence showed the highest sequence identity to that of Neptunitalea chrysea NBRC 110019 (97.2%) and others with below 96% sequence identity.

View Article and Find Full Text PDF

During the harvest of Ilex paraguariensis, approximately 2-5 tons per hectare of thick stems are left on the soil surface. The outer portion of these stems, referred to as the coproduct, constitutes 30% of the total residue mass. Although this coproduct has been partially characterized in terms of its phytochemical profile, its technological applications remain unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!