Herpesviruses establish latency in suitable host cells after primary infection and persist in their host organisms for life. Most of the viral genes are silenced during latency, also enabling the virus to escape from an immune response. This study addresses the control of viral gene silencing by epigenetic mechanisms, using Herpesvirus saimiri (HVS) as a model system. Strain C488 of this gamma-2-herpesvirus can transform human T cells to stable growth in vitro, and it persists in the nuclei of those latently infected T cells as a nonintegrating, circular, and histone-associated episome. The whole viral genome was probed for histone acetylation at high resolution by chromatin immunoprecipitation-on-chip (ChIP-on-chip) with a custom tiling microarray. Corresponding to their inactive status in human T cells, the lytic promoters consistently revealed a heterochromatic phenotype. In contrast, the left terminal region of the genome, which encodes the stably expressed oncogenes stpC and tip as well as the herpesvirus U RNAs, was associated with euchromatic histone acetylation marks representing "open" chromatin. Although HVS latency in human T lymphocytes is considered a stable and irreversible state, incubation with the histone deacetylase inhibitor trichostatin A resulted in changes reminiscent of the induction of early lytic replication. However, infectious viral particles were not produced, as the majority of cells went into apoptosis. These data show that epigenetic mechanisms are involved in both rhadinoviral latency and transition into lytic replication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3094983PMC
http://dx.doi.org/10.1128/JVI.00164-11DOI Listing

Publication Analysis

Top Keywords

histone acetylation
12
human cells
12
herpesvirus saimiri
8
histone deacetylase
8
deacetylase inhibitor
8
epigenetic mechanisms
8
lytic replication
8
cells
6
genome-wide histone
4
acetylation profiling
4

Similar Publications

Discovery of a novel CDK4/6 and HDAC dual-targeting agent for the treatment of hepatocellular carcinoma.

Bioorg Chem

December 2024

The State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.

The down-regulation of p21 after long-term CDK4/6 inhibition represents a key mechanism causing resistance to CDK4/6 inhibitors in some tumor cells, while the HDAC inhibitor could upregulate the level of p21. Herein, a series of novel CDK4/6 and HDAC dual-targeting inhibitors based on the moiety of palbociclib were designed and synthesized. Among them, compound N14 potently inhibited CDK4/6 and HDAC1/6 at nanomolar levels and induced cell apoptosis and G/G phase arrest through HDAC-p21-CDK signaling pathway in HuH-7 cell line.

View Article and Find Full Text PDF

Nucleosomal asymmetry shapes histone mark binding and promotes poising at bivalent domains.

Mol Cell

December 2024

Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK; Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK. Electronic address:

Promoters of developmental genes in embryonic stem cells (ESCs) are marked by histone H3 lysine 4 trimethylation (H3K4me3) and H3K27me3 in an asymmetric nucleosomal conformation, with each sister histone H3 carrying only one of the two marks. These bivalent domains are thought to poise genes for timely activation upon differentiation. Here, we show that asymmetric bivalent nucleosomes recruit repressive H3K27me3 binders but fail to enrich activating H3K4me3 binders, thereby promoting a poised state.

View Article and Find Full Text PDF

Metabolism-epigenetic interaction-based bone and dental regeneration: From impacts and mechanisms to treatment potential.

Bone

December 2024

Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Centre for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Centre of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China. Electronic address:

Metabolic pathways exhibit fluctuating activities during bone and dental loss and defects, suggesting a regulated metabolic plasticity. Skeletal remodeling is an energy-demanding process related to altered metabolic activities. These metabolic changes are frequently associated with epigenetic modifications, including variations in the expression or activity of enzymes modified through epigenetic mechanisms, which directly or indirectly impact cellular metabolism.

View Article and Find Full Text PDF

Canine monocytic ehrlichiosis (CME), induced by Ehrlichia canis, is an important infectious disease in dogs, characterized by various clinical signs and consequent immune dysfunction. This study aimed to characterize nuclear morphology, chromatin compaction, histone H3 acetylation, and DNA methylation in lymphocytes from dogs naturally infected with E. canis, compared with healthy controls.

View Article and Find Full Text PDF

Telomeres are crucial for cancer progression. Immune signalling in the tumour microenvironment has been shown to be very important in cancer prognosis. However, the mechanisms by which telomeres might affect tumour immune response remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!