Fractal analysis of behaviour in a wild primate: behavioural complexity in health and disease.

J R Soc Interface

Department of Ecology and Social Behaviour, Kyoto University Primate Research Institute, 41-2 Kanrin, Inuyama, 484-8506 Aichi, Japan.

Published: October 2011

Parasitism and other stressors are ubiquitous in nature but their effects on animal behaviour can be difficult to identify. We investigated the effects of nematode parasitism and other indicators of physiological impairment on the sequential complexity of foraging and locomotion behaviour among wild Japanese macaques (Macaca fuscata yakui). We observed all sexually mature individuals (n = 28) in one macaque study group between October 2007 and August 2008, and collected two faecal samples/month/individual (n = 362) for parasitological examination. We used detrended fluctuation analysis (DFA) to investigate long-range autocorrelation in separate, binary sequences of foraging (n = 459) and locomotion (n = 446) behaviour collected via focal sampling. All behavioural sequences exhibited long-range autocorrelation, and linear mixed-effects models suggest that increasing infection with the nodular worm Oesophagostomum aculeatum, clinically impaired health, reproductive activity, ageing and low dominance status were associated with reductions in the complexity of locomotion, and to a lesser extent foraging, behaviour. Furthermore, the sequential complexity of behaviour increased with environmental complexity. We argue that a reduction in complexity in animal behaviour characterizes individuals in impaired or 'stressed' states, and may have consequences if animals cannot cope with heterogeneity in their natural habitats.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3163426PMC
http://dx.doi.org/10.1098/rsif.2011.0049DOI Listing

Publication Analysis

Top Keywords

behaviour wild
8
animal behaviour
8
sequential complexity
8
long-range autocorrelation
8
behaviour
7
complexity
6
fractal analysis
4
analysis behaviour
4
wild primate
4
primate behavioural
4

Similar Publications

Bridging the fields of cognition and birdsong with corvids.

Curr Opin Neurobiol

January 2025

Animal Physiology, Institute of Neurobiology, University of Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany. Electronic address:

Corvids, readily adaptable across social and ecological contexts, successfully inhabit almost the entire world. They are seen as highly intelligent birds, and current research examines their cognitive abilities. Despite being songbirds with a complete 'song system', corvids have historically received less attention in studies of song production, learning, and perception compared to non-corvid songbirds.

View Article and Find Full Text PDF

Excitatory/Inhibitory imbalance as a mechanism linking autism and sleep problems.

Curr Opin Neurobiol

January 2025

Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University Spokane, 99202, USA. Electronic address:

Sleep problems occur more frequently in individuals with autism spectrum disorder (ASD) than in typically developing individuals, and recent studies support a genetic link between ASD and sleep disturbances. However, it remains unclear how sleep problems may be mechanistically connected to ASD phenotypes. A longstanding hypothesis posits that an imbalance between excitatory and inhibitory (E/I) signaling in the brain underlies the behavioral characteristics of ASD.

View Article and Find Full Text PDF

Preference tests are commonly used to assess fish behavior and cognition in several research fields. This study aimed to investigate how fish perform in a preference test involving extended habituation to the apparatus, which was expected to reduce stress. We contrasted the choice between a sector of the apparatus with natural vegetation, expected to be the preferred stimulus, and a barren sector.

View Article and Find Full Text PDF

Hypermethylation of tumor suppressor genes is a hallmark of leukemia. The hypomethylating agent decitabine covalently binds, and degrades DNA (cytosine-5)-methyltransferase 1 (DNMT1). Structural similarities within DNA-binding domains of DNMT1, and the leukemic driver histone-lysine N-methyltransferase 2A (KMT2A) suggest that decitabine might also affect the latter.

View Article and Find Full Text PDF

Background: Fragile X syndrome (FXS) is a leading known genetic cause of intellectual disability and autism spectrum disorders (ASD)-associated behaviors. A consistent and debilitating phenotype of FXS is auditory hypersensitivity that may lead to delayed language and high anxiety. Consistent with findings in FXS human studies, the mouse model of FXS, the Fmr1 knock out (KO) mouse, shows auditory hypersensitivity and temporal processing deficits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!