Background: Antiviral drugs are urgently needed for the treatment of acute and chronic diseases caused by enteroviruses such as coxsackievirus B3 (CVB3). The main goal of this study is quantitative structure-activity relationship (QSAR) analysis of anti-CVB3 activity (clinical CVB3 isolate 97927 [log IC50, µM]) and investigation of the selectivity of 25 ([biphenyloxy]propyl)isoxazoles, followed by computer-aided design and virtual screening of novel active compounds.
Discussion: The 2D QSAR obtained models are quite satisfactory (R(2) = 0.84-0.99, Q(2) = 0.76-0.92, R(2)(ext) = 0.62-0.79). Compounds with high antiviral activity and selectivity have to contain 5-trifluoromethyl-[1,2,4]oxadiazole or 2,4-difluorophenyl fragments. Insertion of 2,5-dimethylbenzene, napthyl and especially biphenyl substituents into investigated compounds substantially decreases both their antiviral activity and selectivity. Several compounds were proposed as a result of design and virtual screening. A high level of activity of 2-methoxy-1-phenyl-1H-imidazo[4,5-c]pyridine (sm428) was confirmed experimentally.
Conclusion: Simplex representation of molecular structure allows successful QSAR analysis of anti-CVB3 activity of ([biphenyloxy]propyl)isoxazole derivatives. Two possible ways of battling CVB3 are considered as a future perspective.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4155/fmc.10.278 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!