Three new europium complexes, Eu(PFBA)3 (H2O)4, Eu(PFBA)3 Phen (H2O)3 and Eu(PFBA)3 TPPO (H2O)3, were synthesized using 4-(4-pyridyl formoxyl) benzoic acid (HPFBA), 1,10-phenanthroline (phen) and triphenyl phosphine oxide (TPPO) as the ligands. In the complexes, two characteristic absorption bands of HPFBA due to vO-H (3 000-2 200 cm(-1)) and v c=o (1 697 cm(-1)) disappear, the asymmetry stretching vibration v(as)(coo-) and symmetry stretching vibration v(s)(coo-) of carboxyl appear, and the deltav(v(as)(coo)) - v(s)(coo-)) values are all smaller than that of NaPFBA. The carboxyl group of the ligand HPFBA is dehydrogenated and coordinated to Eu3+ with a bidentate chelating mode. The fluorescence properties of the complexes were studied. Each complex shows five emission bands at about 583, 596, 618, 655 and 703 nm, which are assigned to the characteristic emission 5D0 --> -F(j) (J = 0, 1, 2, 3, 4) transitions of Eu3+, respectively. The fluorescence intensity becomes stronger after the addition of phen and TPPO, and TPPO is better, which is due to synergistic effect of the second ligands.

Download full-text PDF

Source

Publication Analysis

Top Keywords

fluorescence properties
8
europium complexes
8
stretching vibration
8
[synthesis fluorescence
4
properties europium
4
complexes
4
complexes 4-4-pyridyl
4
4-4-pyridyl formoyl
4
formoyl benzoic
4
benzoic acid]
4

Similar Publications

This study investigated the effects of non-thermal atmospheric plasma (NTAP) treatment on the growth, chemical composition, and biological activity of geranium (Pelargonium graveolens L'Herit) leaves. NTAP was applied at a frequency of 13.56 MHz, exposure time of 15 s, discharge temperature of 25 °C, and power levels (T1 = 50, T2 = 80, and T3 = 120 W).

View Article and Find Full Text PDF

Background: Ochratoxin A (OTA) is toxic secondary metabolites produced by fungi and can pose a serious threat to food safety and human health. Due to the high stability and toxicity, OTA contamination in agricultural products is of great concern. Therefore, the development of a highly sensitive and reliable OTA detection method is crucial to ensure food safety.

View Article and Find Full Text PDF

Exploring Nile Red Staining as an Analytical Tool for Surface-Oxidized Microplastics.

Environ Res

January 2025

School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.; Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.; Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.. Electronic address:

Microplastics (MPs), defined as plastic particles smaller than 5 mm, have garnered considerable attention owing to their potential biological impact on human health. These particles exhibit a range of physicochemical properties, including size, shape, and surface oxidation. Nile Red is a prominent tool for detecting microplastics, enabling staining for dynamic analyses within biological systems.

View Article and Find Full Text PDF

Mechanosynthesis of fluorescent magnetic alumina for latent fingerprint detection.

J Colloid Interface Sci

January 2025

iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.

A green approach towards the synthesis of both conventional and magnetic fluorescent powders for revealing latent fingerprints (FPs) is disclosed. The powders formulation is based on a biodegradable matrix and fluorescent dyes extracted from commercial felt-tip markers. Two classes of powders are described: one with a fluorescent component, and other with both fluorescent and magnetic components.

View Article and Find Full Text PDF

Fluorescence-enhanced detection of sulfide ions through tuning the structure-activity relationship of gold nanoclusters.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China; Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China. Electronic address:

The concentration of S is a vital environmental indicator for evaluating the quality of source water, surface water, and wastewater, and it has a significant impact on biological systems, particularly human health. Therefore, it is crucial to detect S selectively and sensitively. In this study, we developed a simple and rapid one-pot method to prepare a gold nanocluster (BSA-AuNCs) probe for fluorescence-enhanced detection of S toxemia and analyzed the morphological characteristics of BSA-AuNCs and its complex with S using various characterization techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!