A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The poly(A) polymerase GLD2 is required for spermatogenesis in Drosophila melanogaster. | LitMetric

The poly(A) polymerase GLD2 is required for spermatogenesis in Drosophila melanogaster.

Development

Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.

Published: April 2011

The DNA of a developing sperm is normally inaccessible for transcription for part of spermatogenesis in many animals. In Drosophila melanogaster, many transcripts needed for late spermatid differentiation are synthesized in pre-meiotic spermatocytes, but are not translated until later stages. Thus, post-transcriptional control mechanisms are required to decouple transcription and translation during spermatogenesis. In the female germline, developing germ cells accomplish similar decoupling through poly(A) tail alterations to ensure that dormant transcripts are not prematurely translated: a transcript with a short poly(A) tail will remain untranslated, whereas elongating the poly(A) tail permits protein production. In Drosophila, the ovary-expressed cytoplasmic poly(A) polymerase WISPY is responsible for stage-specific poly(A) tail extension in the female germline. Here, we examine the possibility that a recently derived testis-expressed WISPY paralog, GLD2, plays a similar role in the Drosophila male germline. We show that knockdown of Gld2 transcripts causes male sterility, as GLD2-deficient males do not produce mature sperm. Spermatogenesis up to and including meiosis appears normal in the absence of GLD2, but post-meiotic spermatid development rapidly becomes abnormal. Nuclear bundling and F-actin assembly are defective in GLD2 knockdown testes and nuclei fail to undergo chromatin reorganization in elongated spermatids. GLD2 also affects the incorporation of protamines and the stability of dynamin and transition protein transcripts. Our results indicate that GLD2 is an important regulator of late spermatogenesis and is the first example of a Gld-2 family member that plays a significant role specifically in male gametogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3062429PMC
http://dx.doi.org/10.1242/dev.059618DOI Listing

Publication Analysis

Top Keywords

polya tail
16
polya polymerase
8
drosophila melanogaster
8
female germline
8
plays role
8
gld2
7
polya
6
spermatogenesis
5
polymerase gld2
4
gld2 required
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!