The biology of the canine oocyte is unusual compared with that of other mammalian females. The present paper reviews both in vivo and in vitro specificities of canine oocytes. Final follicular growth in the bitch is characterised by an early appearance of LH binding sites in the granulosa, a high proportion of polyovular follicles and a preovulatory luteinisation, starting at the time of the LH surge. Through follicular fluid, preovulatory oocytes are thus exposed to high levels of progesterone, as high as 1000-fold plasma concentrations. The composition of the follicular fluid is affected by the size of the female. The more specific aspect of oocyte biology in the bitch is ovulation: oocytes are expelled immature, at the Prophase I stage. Ovulatory follicles are 6-8 mm in diameter, releasing oocytes from 110 µm, with dark cytoplasm. Resumption of meiosis occurs from 48 h postovulation, MII stages appearing 48-54 h after ovulation. The mechanisms controlling such a late meiotic resumption are still unknown. Granulosa cells seem to play a central role as in other mammalian species, but not with cAMP as the principal mediator. The importance of a transient reactivation of oocyte transcription a few hours before meiotic resumption is to be explored. These specific features may contribute to the low efficiency of IVM. Only 10-20% oocytes reach the metaphase stage and suffer from a poor cytoplasmic maturation. Moreover, in vitro culture of canine oocytes is associated with a high proportion of degeneration. To date, IVM of the oocytes is the main limiting factor for the development of assisted reproductive techniques in the canine. A better knowledge of the basic physiology of folliculogenesis and the molecular mechanisms controlling oocyte meiosis resumption in this species may allow us to overcome this obstacle.

Download full-text PDF

Source
http://dx.doi.org/10.1071/RD10064DOI Listing

Publication Analysis

Top Keywords

canine oocyte
8
vivo vitro
8
canine oocytes
8
high proportion
8
follicular fluid
8
mechanisms controlling
8
meiotic resumption
8
oocytes
7
canine
5
oocyte uncommon
4

Similar Publications

The objective of this study was to investigate the early follicular apoptosis in canine ovarian follicles by examining the expression of anti-apoptotic BCL-2 and pro-apoptotic BAX proteins throughout the estrous cycle associated with oocyte maturation. Follicular cells from preantral and antral follicles of varying sizes were isolated and grouped based on follicle type and estrous phase. Antral follicles underwent flow cytometry analysis, whereas preantral follicles were subjected to Western blotting.

View Article and Find Full Text PDF

L-carnitine supplementation in conventional slow and ultra-rapid freezing media improves motility, membrane integrity, and fertilizing ability of dog epididymal sperm.

Anim Reprod Sci

November 2024

Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Cuenca EC010205, Ecuador; Centro Latinoamericano de formación en especies mayores y menores - CLAFEM, Cuenca, Ecuador. Electronic address:

This study aimed to assess the impact of L-carnitine (LC) supplementation in conventional-slow (CS) and ultra-rapid (UR) freezing media on post-thaw quality and fertilizing ability of dog epididymal spermatozoa. Sperm samples were collected from 60 epididymides obtained from 30 adult orchiectomized dogs via retrograde flushing. Twenty pooled sperm samples were then created (3 epididymal samples/pool).

View Article and Find Full Text PDF

This study aims to evaluate the effects of nano-ozone solution (NZS) on canine oocyte nuclear maturation, associated with the alterations of antioxidant and oxidant status and cyclin-dependent kinase 1 (CDK1), cyclin B1 gene expressions. Oocytes were cultured in four distinct concentrations of NZS (0.5, 1, 2, and 5 µg/mL) and parthenogenetically activated.

View Article and Find Full Text PDF

Accomplishment of canine cloning through matured oocytes: a pioneering milestone.

J Anim Sci Technol

May 2024

Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea.

The maturation (IVM) rate of canine oocytes remains low compared to other mammals due to their unique reproductive characteristics. This study aimed to explore the effect of hormone supplementation during the IVM of canine immature oocytes on nuclear maturation and subsequently assess its potential application in canine somatic cell nuclear transfer (SCNT). Immature oocytes were collected and cultured in an IVM medium supplemented with hormones (follicle-stimulating hormone [FSH] and progesterone [P4]) or without hormones (control) for 24 hours.

View Article and Find Full Text PDF

Reproductive failure in dogs is often due to unknown causes, and correct diagnosis and treatment are not always achieved. This condition is associated with various congenital and acquired etiologies that develop inflammatory processes, causing an increase in the number of leukocytes within the female reproductive tract (FRT). An encounter between polymorphonuclear neutrophils (PMNs) and infectious agents or inflammation in the FRT could trigger neutrophil extracellular traps (NETs), which are associated with significantly decreased motility and damage to sperm functional parameters in other species, including humans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!