α(1)-antitrypsin deficiency is an autosomal recessive disorder that results from point mutations in the SERPINA1 gene. The Z mutation (Glu342Lys) accounts for the majority of cases of severe α(1)-antitrypsin deficiency. It causes the protein to misfold into ordered polymers that accumulate within the endoplasmic reticulum of hepatocytes. It is these polymers that form the periodic acid Schiff positive inclusions that are characteristic of this condition. These inclusions are associated with neonatal hepatitis, cirrhosis and hepatocellular carcinoma. The lack of circulating α(1)-antitrypsin exposes the lungs to uncontrolled proteolytic attack and so can predispose the Z α(1)-antitrypsin homozygote to early-onset emphysema. α(1)-antitrypsin polymers can also form in extracellular tissues where they activate and sustain inflammatory cascades. This may provide an explanation for both progressive emphysema in individuals who receive adequate replacement therapy and the selective advantage associated with α(1)-antitrypsin deficiency. Therapeutic strategies are now being developed to block the aberrant conformational transitions of mutant α(1)-antitrypsin and so treat the associated disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1586/eci.10.95 | DOI Listing |
J Biochem Mol Toxicol
January 2025
Department of Cardiothoracic Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou City, Hubei Province, China.
Abdominal aortic aneurysm (AAA) is a severe cardiovascular disease (CVD) that is partly attributable to endothelial dysfunction, inflammatory response, and angiogenesis. G protein-coupled receptor 4 (GPR4), a proton-sensitive G protein-coupled receptor that is abundantly expressed in vascular endothelial cells, has been associated with numerous physiological functions. Nevertheless, its potential involvement in the development of AAA remains unexplored.
View Article and Find Full Text PDFOrv Hetil
January 2025
1 Semmelweis Egyetem, Általános Orvostudományi Kar, Belgyógyászati és Onkológiai Klinika Budapest, Korányi S. u. 2/a, 1083 Magyarország.
Cell Mol Biol (Noisy-le-grand)
January 2025
Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
Mitochondrial ribosomal protein S23 (MRPS23), encoded by a nuclear gene, is a well-known driver of proliferation in cancer. It participates in mitochondrial protein translation, and its expression association has been explored in many types of cancer. However, MRPS23 expression associations are rarely reported in breast cancer (BC).
View Article and Find Full Text PDFCell Biochem Funct
January 2025
Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, Anhui, China.
The study of the mechanism of oligoasthenospermia, which is a major cause of male infertility, has been the focus of research in the field of male reproduction. TAp73, a member of the p53 family of oncogenes, is endowed with tumor-suppressing activity due to its structural and functional homology with p53. It has been found that TAp73, plays a key role in spermatogenesis and maintaining male reproduction.
View Article and Find Full Text PDFPlant Commun
January 2025
State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.
Maintaining a stable basal level of salicylic acid (SA) is crucial for plant growth, development, and stress response, though basal levels of SA vary significantly among plant species. However, the molecular mechanisms by which basal SA regulates plant growth and stress response remain to be elucidated. In this study, we performed a genetic screen to identify suppressors of the root growth defect in Osaim1, a rice mutant deficient in basal SA biosynthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!