Practical synthesis of fluorine-containing α- and β-amino acids: recipes from Kiev, Ukraine.

Future Med Chem

Department of Chemistry and Biochemistry, The University of Oklahoma, 620 Parrington Oval, Room 208, Norman, OK 73019-3051, USA.

Published: August 2009

Naturally occurring compounds containing a C-F bond are extremely rare; only a handful of fluorine-containing carboxylic acids have been described so far. By contrast, man-made fluorine-containing derivatives of all major classes of biologically important compounds are extremely promising medicinal targets used in the elucidation of biochemical, metabolic transformations and the development of new pharmaceuticals. Among the fluorine-containing derivatives of natural products, fluorinated analogs of amino acids are of particular interest and medicinal potential. This article presents a concise review of various synthetic methods, developed by the Kiev's school of bioorganic chemistry, for the preparation of fluorine-containing analogs of α- and β-amino acids, α-hydroxy acids, amines, as well as their phosphorus and sulfur-derived compounds, in enantiomerically pure form. One of the major methodological goals of the study was practicality, which is understood by us as stereochemical generality, operational convenience and synthetic affordance for each reaction step and isolation of the target products. The synthetic methods developed by our group can be roughly divided in two general categories: fluorine-adaptation of known synthetic approaches and discovery of new reactions. The former approach is most prominently represented by asymmetric homologation of nucleophilic glycine equivalents using fluorinated substrates via alkyl halide alkylations, aldol and Michael addition reactions. A plethora of discovered unexpected reaction outcomes, in particular stereochemical, are emphasized in this review and the particular role of fluorine, in altering the 'normal' reaction result, is explained. The latter direction is notably represented by the novel 1,3-proton shift reaction, a biomimetic reductive amination of fluorinated carbonyl compounds to the corresponding amines and amino acids, as well as the development of α-fluoroalkyl epoxides as true fluorinated synthons for generalized asymmetric synthesis of various biologically relevant compounds. Despite the highly anticipated potential of fluorine-containing amino compounds, their medicinal chemistry still remains underexplored. The major obstacle, in our opinion, is that these selectively fluorinated compounds are generally unavailable to the medicinal chemists for comprehensive, systematic study. We hope this review of synthetic methods will highlight and bring attention to particular types of fluorinated amino acids and related compounds readily available on a laboratory scale using methods developed by our group.

Download full-text PDF

Source
http://dx.doi.org/10.4155/fmc.09.70DOI Listing

Publication Analysis

Top Keywords

amino acids
12
synthetic methods
12
methods developed
12
α- β-amino
8
β-amino acids
8
compounds
8
fluorine-containing derivatives
8
review synthetic
8
developed group
8
acids
7

Similar Publications

Purpose: Mitoxantrone (MTX) is largely restricted in clinical usage due to its significant cardiotoxicity. Multiple studies have shown that an imbalance in the gut-heart axis plays an important role in the development of cardiovascular disease (CVD). We aim to explore the possible correlations between gut microbiota (GM) compositions and cardiometabolic (CM) disorder in MTX-triggered cardiotoxicity mice.

View Article and Find Full Text PDF

Comprehensive Analysis of Metabolic Changes in Mice Exposed to Corilagin Based on GC-MS Analysis.

Drug Des Devel Ther

January 2025

Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, People's Republic of China.

Background: Corilagin is widely distributed in various medicinal plants. In recent years, numerous pharmacological activities of Corilagin have been reported, including anti-inflammatory, antiviral, hepatoprotective, anti-tumor, and anti-fibrosis effects. However, there is still a need for systematic metabolomics analysis to further elucidate its mechanisms of action.

View Article and Find Full Text PDF

Disentangling protein metabolic costs in human cells and tissues.

PNAS Nexus

January 2025

Logic of Genomic Systems Laboratory (CNB-CSIC), Madrid E-28049, Spain.

While more data are becoming available on gene activity at different levels of biological organization, our understanding of the underlying biology remains incomplete. Here, we introduce a metabolic efficiency framework that considers highly expressed proteins (HEPs), their length, and biosynthetic costs in terms of the amino acids (AAs) they contain to address the observed balance of expression costs in cells, tissues, and cancer transformation. Notably, the combined set of HEPs in either cells or tissues shows an abundance of large and costly proteins, yet tissues compensate this with short HEPs comprised of economical AAs, indicating a stronger tendency toward mitigating costs.

View Article and Find Full Text PDF

Quantum Molecular Dynamics Approach to Understanding Interactions in Betaine Chloride and Amino Acid Natural Deep Eutectic Solvents.

ACS Phys Chem Au

January 2025

Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, 12247-014 São Paulo, Brazil.

The unique properties and versatile applications of natural deep eutectic solvents (NaDES) have sparked significant interest in the field of green chemistry. Comprised of natural components that form liquids at room temperature through strong noncovalent electrostatic interaction, these solvents are cost-effective, nontoxic, and versatile. Betaine chloride-based NaDES, in particular, have shown promise in biocatalysis and sugar extraction due to their excellent properties.

View Article and Find Full Text PDF

Purpose: Heterozygous mutations in the insulin gene can give rise to a monogenic diabetes syndrome due to toxic misfolding of the variant proinsulin in the endoplasmic reticulum (ER) of pancreatic β-cells. Clinical mutations are widely distributed in the sequence (86 amino acids). Misfolding induces chronic ER stress and interferes in with wildtype biosynthesis and secretion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!