The processing of orientations is at the core of our visual experience. Orientation selectivity in human visual cortex has been inferred from psychophysical experiments and more recently demonstrated with functional magnetic resonance imaging (fMRI). One method to identify orientation-selective responses is fMRI adaptation, in which two stimuli-either with the same or with different orientations-are presented successively. A region containing orientation-selective neurons should demonstrate an adapted response to the "same orientation" condition in contrast to the "different orientation" condition. So far, human primary visual cortex (V1) showed orientation-selective fMRI adaptation only in experimental designs using prolonged pre-adaptation periods (∼40 s) in combination with top-up stimuli that are thought to maintain the adapted level. This finding has led to the notion that orientation-selective short-term adaptation in V1 (but not V2 or V3) cannot be demonstrated using fMRI. The present study aimed at re-evaluating this question by testing three differently timed adaptation designs. With the use of a more sensitive analysis technique, we show robust orientation-selective fMRI adaptation in V1 evoked by a short-term adaptation design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6869976PMC
http://dx.doi.org/10.1002/hbm.21244DOI Listing

Publication Analysis

Top Keywords

visual cortex
12
fmri adaptation
12
functional magnetic
8
magnetic resonance
8
resonance imaging
8
primary visual
8
orientation" condition
8
orientation-selective fmri
8
short-term adaptation
8
adaptation
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!