Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cdx1, an upstream regulator of Hox genes, is best characterized for its homeotic effects upon the developing axial skeleton, particularly in the neck. It responds to retinoic acid (RA) in both mouse embryos and embryonal carcinoma (EC) cells. By use of beta-galactosidase chemiluminescence, we show that a mouse Cdx1/lacZ reporter expressed in P19 EC cells responds to RA by the combined activities of an intron retinoic acid response element (RARE) and an upstream RARE. In contrast, a chicken Cdx1/lacZ reporter responds only by activity of the intron RARE. Database analyses upon Cdx1 from twenty three vertebrate species reveal that the intron RARE is structurally conserved in amniotes (eutherian mammals, marsupials, birds and Anole lizard), but not in Xenopus or fish. The upstream RARE is structurally conserved only in eutherian mammals. We conclude that the intron RARE originated at around the amphibian/amniote division, and the upstream RARE appeared around the marsupial/eutherian mammal division. In view of the site of action of Cdx1, we propose that acquisition of the intron RARE may have facilitated the substantial changes that occurred in the neck and anterior thorax at the advent of the amniotes. We present evidence that Cdx1 is also a developmental regulator of the female urogenital system, and we suggest that acquisition of the upstream RARE may have contributed to morphological divergence of marsupial and eutherian mammals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1387/ijdb.103252sg | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!