The present work reports on the first attempt to study water mobility in phototrophic biofilms, applying the (1)H-NMR relaxometry technique to closely monitored microbial communities grown in a microcosm under controlled ambient conditions. Longitudinal water proton relaxation times exhibited a bi-exponential behavior in all biofilm samples, indicating two types of water molecules with diverging dynamic properties, confined to different compartments of the biofilm. The fast-relaxing component can be attributed to water molecules tightly bound to the intracellular matrix, while the slow-relaxing component could reflect the behavior of water embedded in the biopolymer matrix, confined into matrix pores and channels. The results are discussed with respect to a possible key role of exopolysaccharides and uronic acids in water binding in phototrophic biofilms.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08927014.2011.565123DOI Listing

Publication Analysis

Top Keywords

phototrophic biofilms
12
water mobility
8
water molecules
8
water
7
1h-nmr analysis
4
analysis water
4
mobility cultured
4
cultured phototrophic
4
biofilms work
4
work reports
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!