Biodegradable hydrogels are studied as potential scaffolds for soft tissue regeneration. In this work biodegradable hydrogels were prepared from synthetic poly(α-amino acid)s, poly(AA)s. The covalently crosslinked gels were formed by radical copolymerization of methacryloylated poly(AA)s, e.g. poly[N (5)-(2-hydroxy-ethyl)-L-glutamine-ran-L-alanine-ran-N (6)-methacryloyl-L-lysine], as a multifunctional macro-monomer with a low-molecular-weight methacrylic monofunctional monomer, e.g. 2-hydroxyethyl methacrylate (HEMA). Methacryloylated copolypeptides were synthesized by polymerization of N-carboxyanhydrides of respective amino acids and subsequent side-chain modification. Due to their polypeptide backbone, synthetic poly(AA)s are cleavable in biological environment by enzyme-catalyzed hydrolysis. The feasibility of enzymatic degradation of poly(AA)s alone and the hydrogels made from them was studied using elastase, a matrix proteinase involved in tissue healing processes, as a model enzyme. Specificity of elastase for cleavage of polypeptide chains behind the L-alanine residues was reflected in faster degradation of L-alanine-containing copolymers as well as of hydrogels composed of them.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10856-011-4275-x | DOI Listing |
JACS Au
January 2025
Applied Molecular Enzyme Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
Interfacial enzyme catalysis is widespread in both nature and industry. Granular starch is a sustainable and abundant raw material for which a rigorous correlation of the surface structure with enzymatic degradation is lacking. Here pullulanase-catalyzed debranching of 12 granular starches varying in amylopectin contents and branch chain contents and lengths is shown to present a biphasic relationship characteristic of the Sabatier principle.
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemistry, National Institute of Technology Rourkela - 769008 Odisha India +91-661-2462651 +91-661-2462980.
The self-assembled ferritin protein nanocage plays a pivotal role during oxidative stress, iron metabolism, and host-pathogen interaction by executing rapid iron uptake, oxidation and its safe-storage. Self-assembly creates a nanocompartment and various pores/channels for the uptake of charged substrates (Fe) and develops a concentration gradient across the protein shell. This phenomenon fuels rapid ferroxidase activity by an upsurge in the substrate concentration at the catalytic sites.
View Article and Find Full Text PDFBMC Med Genomics
January 2025
Ultrasound Diagnosis Department, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, China.
Background: The clinical manifestations of PI4KA-related disorders are characterized by considerable variability, predominantly featuring neurological impairments, gastrointestinal symptoms, and a combined immunodeficiency. The aim of this study was to delineate the novel spectrum of PI4KA variants detected prenatally and to assess their influence on fetal development.
Methods: A thorough fetal ultrasound screening was conducted, supplemented by both antenatal and post-abortion magnetic resonance imaging (MRI) studies.
Sci Rep
January 2025
Department of Pharmacology and Toxicology College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
Exposure to anthracene can cause skin and eye irritation, respiratory issues, and potential long-term health risks, including carcinogenic effects. It is also toxic to aquatic and human life and has the potential for long-term environmental contamination. This study aims to alleviate the adverse environmental effects of anthracene through fungal degradation, focusing on bioremediation approaches using bioinformatics.
View Article and Find Full Text PDFNat Commun
January 2025
School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
Although biocatalysis offers complementary or alternative approaches to traditional synthetic methods, the limited range of available enzymatic reactions currently poses challenges in synthesizing a diverse array of desired compounds. Consequently, there is a significant demand for developing novel biocatalytic processes to enable reactions that were previously unattainable. Herein, we report the discovery and subsequent protein engineering of a unique halohydrin dehalogenase to develop a biocatalytic platform for enantioselective formation and ring-opening of oxetanes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!