The development of noninvasive neuroimaging techniques, such as fMRI, has rapidly advanced our understanding of the neural systems underlying the integration of visual and motor information. However, the fMRI experimental design is restricted by several environmental elements, such as the presence of the magnetic field and the restricted view of the participant, making it difficult to monitor and measure behaviour. The present article describes a novel, specialized software package developed in our laboratory called Biometric Integration Recording and Analysis (BIRA). BIRA integrates video with kinematic data derived from the hand and eye, acquired using MRI-compatible equipment. The present article demonstrates the acquisition and analysis of eye and hand data using BIRA in a mock (0 Tesla) scanner. A method for collecting and integrating gaze and kinematic data in fMRI studies on visuomotor behaviour has several advantages: Specifically, it will allow for more sophisticated, behaviourally driven analyses and eliminate potential confounds of gaze or kinematic data.

Download full-text PDF

Source
http://dx.doi.org/10.3758/s13428-011-0067-yDOI Listing

Publication Analysis

Top Keywords

kinematic data
12
eye hand
8
gaze kinematic
8
novel integrative
4
integrative method
4
method analyzing
4
analyzing eye
4
hand behaviour
4
behaviour reaching
4
reaching grasping
4

Similar Publications

Background: It is known that open wedge high tibial osteotomy (OWHTO) may lead to progression of patellofemoral degeneration due to descent of the patellar height. However, the difference in patellofemoral joint (PFJ) loads with normal daily activity between uniplane and biplane osteotomies is unclear. The purpose of this study was to reveal the differences in PFJ biomechanics between uniplane and biplane OWHTO using finite element analysis (FEA).

View Article and Find Full Text PDF

Motor imagery (MI) is a mental simulation of a movement without its actual execution. Our study aimed to assess how MI of two modalities of gait (normal gait and much more posturally challenging slackline gait) affects muscle activity and lower body kinematics. Electromyography (biceps femoris, gastrocnemius medialis, rectus femoris and tibialis anterior muscles) as well as acceleration and angular velocity (shank, thigh and pelvis segments) data were collected in three tasks for both MI modalities of gait (rest, gait imagery before and after the real execution of gait) in quiet bipedal stance in 26 healthy young adults.

View Article and Find Full Text PDF

Background: Deficient internal rotation after shoulder arthroplasty can inhibit specific essential activities of daily living that require behind-the-back arm positioning. Although postoperative internal rotation deficits occur, their impact on outcomes of total shoulder arthroplasty (TSA) is not well established. Previous authors have validated the Single Assessment Numeric Evaluation (SANE) as a patient-reported assessment of acceptable outcomes of TSA.

View Article and Find Full Text PDF

Robust kinetics estimation from kinematics via direct collocation.

Front Bioeng Biotechnol

December 2024

Shi's Center of Orthopedics and Traumatology (Institute of Traumatology, Shuguang Hospital), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.

Introduction: Accurate joint moment analysis is essential in biomechanics, and the integration of direct collocation with markerless motion capture offers a promising approach for its estimation. However, markerless motion capture can introduce varying degrees of error in tracking trajectories. This study aims to evaluate the effectiveness of the direct collocation method in estimating kinetics when joint trajectory data are impacted by noise.

View Article and Find Full Text PDF

Toward the Bayesian brain: a generative model of information transmission by vestibular sensory neurons.

Front Neurol

December 2024

Department of Head and Neck Surgery and Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.

The relative accessibility and simplicity of vestibular sensing and vestibular-driven control of head and eye movements has made the vestibular system an attractive subject to experimenters and theoreticians interested in developing realistic quantitative models of how brains gather and interpret sense data and use it to guide behavior. Head stabilization and eye counter-rotation driven by vestibular sensory input in response to rotational perturbations represent natural, ecologically important behaviors that can be reproduced in the laboratory and analyzed using relatively simple mathematical models. Models drawn from dynamical systems and control theory have previously been used to analyze the behavior of vestibular sensory neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!