Influenza A viral infections reached pandemic levels in 1918, 1957, 1968, and, most recently, in 2009 with the emergence of the swine-origin H1N1 influenza virus. The development of novel therapeutics or prophylactics for influenza virus infection is urgently needed. We examined the evaluation of the anti-influenza virus (A/WSN/33 (H1N1)) activity of Brazilian green propolis water extract (PWE) and its constituents by cell viability and real-time PCR assays. Our findings showed strong evidence that PWE has an anti-influenza effect and demonstrate that caffeoylquinic acids are the active anti-influenza components of PWE. Furthermore, we have found that the amount of viral RNA per cell remained unchanged even in the presence of PWE, suggesting that PWE has no direct impact on the influenza virus but may have a cytoprotective activity by affecting internal cellular process. These findings indicate that caffeoylquinic acids are the active anti-influenza components of PWE. Above findings might facilitate the prophylactic application of natural products and the realization of novel anti-influenza drugs based on caffeoylquinic acids, as well as further the understanding of cytoprotective intracellular mechanisms in influenza virus-infected cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057164PMC
http://dx.doi.org/10.1155/2011/254914DOI Listing

Publication Analysis

Top Keywords

caffeoylquinic acids
16
influenza virus
12
brazilian green
8
green propolis
8
propolis water
8
water extract
8
acids active
8
active anti-influenza
8
anti-influenza components
8
components pwe
8

Similar Publications

In this study, screening of the collected 70 Salvia nemorosa L. populations from 54 habitats from West Azerbaijan province, Iran was evaluated by analyzing the content of phytochemical compounds, antioxidant activity, and UHPLC-HRMS profiling in different populations. The aerial parts of the plants were analyzed based on total phenolic (TPC) and flavonoid (TFC), total tannin (TTC), ascorbic acid (AAC), chlorophylls (Cla, and Clb), total carotenoid (TCC), β-carotene, antioxidant activity (by DPPH and FRAP assays), and 40 polyphenolic compounds by UHPLC-HRMS (phenolic acids, flavonoids and fatty acyl glicosides).

View Article and Find Full Text PDF

Modulation of Gut Microbiota Composition and Microbial Phenolic Catabolism of Phenolic Compounds from L. and L.

J Agric Food Chem

December 2024

Departmental Section of Food Science, Faculty of Science, Universidad Autónoma de Madrid, Madrid 28049, Spain.

The impact of the nonbioaccessible fraction of two phenolic-rich extracts from L. (yarrow) and L. (marjoram) on the modulation of the human gut microbiota was investigated .

View Article and Find Full Text PDF

Postprandial hyperglycemia is a hallmark of diabetes, and inhibition of key carbohydrate digestion enzymes such as α-amylase (α-AMY) and α-glucosidase (α-GLU) is an effective therapeutic target. A potential unexplored source of inhibitory compounds of these enzymes is Brassica oleracea var. capitata L (BOCE).

View Article and Find Full Text PDF

New insights into ultrasound-assisted noncovalent nanocomplexes of β-lactoglobulin and neochlorogenic acid/cryptochlorogenic acid and its potential application for curcumin loading.

Food Res Int

January 2025

Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China. Electronic address:

The cross-linking sites and structure of protein-polyphenol complexes are susceptible to the type, structure, weight of polyphenols under nonthermal process. The low bioavailability and poor gastrointestinal instability of curcumin (CUR) hampers its application. Hence, changes in binding mechanism, structural and functional properties between β-lactoglobulin (β-LG) with two different configurations of chlorogenic acids (neochlorogenic acids (3-CQA) and cryptochlorogenic acids (4-CQA) by non-covalent binding under ultrasonic treatment, and the potential capacity for loading CUR were researched.

View Article and Find Full Text PDF

The genus Thesium, family Santalaceae, comprises about 350 species, and, although many of them are used as functional food and in traditional medicine, there are limited studies evaluating their pharmacological potential. The present study was designed to evaluate the chemical profile, antioxidant, and enzyme inhibition potential of aerial parts and roots of T. bertramii Azn.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!