Conventional Fourier-transform infrared (FTIR) microspectroscopic systems are limited by an inevitable trade-off between spatial resolution, acquisition time, signal-to-noise ratio (SNR) and sample coverage. We present an FTIR imaging approach that substantially extends current capabilities by combining multiple synchrotron beams with wide-field detection. This advance allows truly diffraction-limited high-resolution imaging over the entire mid-infrared spectrum with high chemical sensitivity and fast acquisition speed while maintaining high-quality SNR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877692 | PMC |
http://dx.doi.org/10.1038/nmeth.1585 | DOI Listing |
J Mol Model
January 2025
School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Haidian District, Ding No.11 Xueyuan Road, Beijing, 100083, People's Republic of China.
Context: Understanding the structural characteristics of coal at the molecular level is fundamental for its effective utilization. To explore the molecular structure characteristic, the long-flame coal from Daliuta (DLT), coking coal from Yaoqiao (YQ), and anthracite from Taixi (TX) were investigated using various techniques such as elemental analysis, Fourier transform infrared spectroscopy, solid-state C nuclear magnetic resonance spectroscopy, and X-ray photoelectron spectroscopy. Based on the structural parameters, the coal molecular model was constructed and optimized.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Fermi resonance is a common phenomenon, and a hidden caveat exists in the applications of infrared probes, causing spectral complication and shorter vibrational lifetime. In this work, using the cyanotryptophan (CNTrp) side chain model compound 5-cyanoindole (CN-5CNI), we performed Fourier transform infrared spectroscopy (FTIR) and two-dimensional infrared (2D-IR) spectroscopy on unlabeled CN-5CNI and its isotopically labeled substituents (CN-5CNI, CN-5CNI, CN-5CNI) and demonstrated the existence of Fermi resonance in 5CNI. By constructing the Hamiltonian and simulating 2D-IR spectra, we show that the distinct Fermi resonance 2D-IR patterns in various isotope substituents are determined by the quantum mixing consequences at the = 1 state, as well as the = 2 state, where the Fermi coupling and anharmonicity play a crucial role.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, People's Republic of China.
Background: Cancer immunotherapy has achieved great success in breast cancer treatment in recent years. The Programmed Death-1 (PD-1) /Programmed Death-Ligand 1 (PD-L1) immune checkpoint pathway is among the most studied. BMS-1166, a PD-L1 inhibitor, can interfere with PD-1 and PD-L1 interaction.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Arar, Saudi Arabia.
Introduction: Rhein, a natural bioactive lipophilic compound with numerous pharmacological activities, faces limitations in clinical application due to poor aqueous solubility and low bioavailability. Thus, this study aimed to develop a rhein-loaded self-nano emulsifying drug delivery system (RL-SNEDDS) to improve solubility and bioavailability.
Methods: The RL-SNEDDS was prepared by aqueous titration method with eucalyptus oil (oil phase), tween 80 (surfactant), and PEG 400 (co-surfactant) and optimization was performed by 3 factorial design.
Heliyon
January 2025
Department of Pharmaceutical Science, Faculty of Pharmacy, Umm Al-Qura University, Makkah, P.O. Box 751, Saudi Arabia.
This study presents the synthesis and application of water-ball (sodium polyacrylate) stabilized zero-valent iron nanoparticles (wb@Fe) for the eco-friendly degradation of Methyl Orange (MO). The nanoparticles were prepared using a chemical reduction method using NaBH. Characterization techniques including Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS), and X-ray Diffraction (XRD) were employed to analyze the morphology, elemental composition, valent state and crystallinity of the nanoparticles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!