Rapid charge and discharge rates have become an important feature of electrical energy storage devices, but cause dramatic reductions in the energy that can be stored or delivered by most rechargeable batteries (their energy capacity). Supercapacitors do not suffer from this problem, but are restricted to much lower stored energy per mass (energy density) than batteries. A storage technology that combines the rate performance of supercapacitors with the energy density of batteries would significantly advance portable and distributed power technology. Here, we demonstrate very large battery charge and discharge rates with minimal capacity loss by using cathodes made from a self-assembled three-dimensional bicontinuous nanoarchitecture consisting of an electrolytically active material sandwiched between rapid ion and electron transport pathways. Rates of up to 400C and 1,000C for lithium-ion and nickel-metal hydride chemistries, respectively, are achieved (where a 1C rate represents a one-hour complete charge or discharge), enabling fabrication of a lithium-ion battery that can be 90% charged in 2 minutes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nnano.2011.38 | DOI Listing |
Chem Commun (Camb)
January 2025
Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
Electrically rechargeable zinc-air batteries (ZABs) are emerging as promising energy storage devices in the post-lithium era, leveraging the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) at the air cathodes. Efficient bifunctional oxygen electrocatalysts, capable of catalyzing both the ORR and OER, are essential for the operation of rechargeable ZABs. Traditional Pt- and RuO/IrO-based catalysts are not ideal, as they lack sufficient bifunctional ORR and OER activity, exhibit limited long-term durability, require high overpotentials and are expensive.
View Article and Find Full Text PDFACS Nano
January 2025
Institute for Energy Electrochemistry and Urban Mines Metallurgy, School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China.
Manganese-based layer-structured transition metal oxides are considered promising cathode materials for future sodium batteries owing to their high energy density potential and industrial feasibility. The grain-related anisotropy and electrode/electrolyte side reactions, however, constrain their energy density and cycling lifespan, particularly at high voltages. Large-sized single-crystal O3-typed Na[NiMnCuTi]O was thus designed and successfully synthesized toward high-voltage and long-lifespan sodium batteries.
View Article and Find Full Text PDFSmall
January 2025
Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian, 350117, China.
Single-atom materials provide a platform to precisely regulate the electrochemical redox behavior of electrode materials with atomic level. Here, a multifield-regulated sintering route is reported to rapidly prepare single-atom zinc with a very high loading mass of 24.7 wt.
View Article and Find Full Text PDFChemistry
January 2025
Shanghai Jiaotong University: Shanghai Jiao Tong University, College of Smart Energy, CHINA.
Transition-metal nitrides (TMNs) have garnered considerable attention for energy conversion applications owing to their exceptional electronic structures and high catalytic activities. However, the scarcity of active sites in TMNs impedes their large-scale application. This study describes the use of wetness impregnation and ionic-liquid methods to enhance the electrocatalytic efficiency of molybdenum nitride (MoN) atomic clusters finely dispersed on nitrogen-doped carbon (MoN@NC) substrates.
View Article and Find Full Text PDFTalanta
January 2025
Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang, 110122, China. Electronic address:
Miniaturized optical emission spectrometric (OES) devices based on various microplasma excitation sources provide a reliable tool for in-situ elemental analysis. The key to improving analytical performance is enhancing the excitation capability of the microplasma source in these devices. Here, dielectric barrier discharge (DBD) and point discharge (PD) technologies are combined to construct an enhanced dual-stage excitation source (called DBD-PD), which improves the overall excitation efficiency and OES signal sensitivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!