Mouse protein-25 (MO25) isoforms bind to the STRAD pseudokinase and stabilise it in a conformation that can activate the LKB1 tumour suppressor kinase. We demonstrate that by binding to several STE20 family kinases, MO25 has roles beyond controlling LKB1. These new MO25 targets are SPAK/OSR1 kinases, regulators of ion homeostasis and blood pressure, and MST3/MST4/YSK1, involved in controlling development and morphogenesis. Our analyses suggest that MO25α and MO25β associate with these STE20 kinases in a similar manner to STRAD. MO25 isoforms induce approximately 100-fold activation of SPAK/OSR1 dramatically enhancing their ability to phosphorylate the ion cotransporters NKCC1, NKCC2 and NCC, leading to the identification of several new phosphorylation sites. siRNA-mediated reduction of expression of MO25 isoforms in mammalian cells inhibited phosphorylation of endogenous NKCC1 at residues phosphorylated by SPAK/OSR1, which is rescued by re-expression of MO25α. MO25α/β binding to MST3/MST4/YSK1 also stimulated kinase activity three- to four-fold. MO25 has evolved as a key regulator of a group of STE20 kinases and may represent an ancestral mechanism of regulating conformation of pseudokinases and activating catalytically competent protein kinases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3101989PMC
http://dx.doi.org/10.1038/emboj.2011.78DOI Listing

Publication Analysis

Top Keywords

mo25 isoforms
12
protein kinases
8
ste20 kinases
8
mo25
7
kinases
6
mo25 master
4
master regulator
4
spak/osr1
4
regulator spak/osr1
4
spak/osr1 mst3/mst4/ysk1
4

Similar Publications

LKB1 biology: assessing the therapeutic relevancy of LKB1 inhibitors.

Cell Commun Signal

June 2024

The Mary &, John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, 790 Commissioners Road East, Room A4‑921, London, ON, N6A 4L6, Canada.

Liver Kinase B1 (LKB1), encoded by Serine-Threonine Kinase 11 (STK11), is a master kinase that regulates cell migration, polarity, proliferation, and metabolism through downstream adenosine monophosphate-activated protein kinase (AMPK) and AMPK-related kinase signalling. Since genetic screens identified STK11 mutations in Peutz-Jeghers Syndrome, STK11 mutants have been implicated in tumourigenesis labelling it as a tumour suppressor. In support of this, several compounds reduce tumour burden through upregulating LKB1 signalling, and LKB1-AMPK agonists are cytotoxic to tumour cells.

View Article and Find Full Text PDF

Calcium/calmodulin-dependent protein kinase kinases (CaMKKs) activate CaMKI, CaMKIV, protein kinase B/Akt, and AMP-activated protein kinase (AMPK) by phosphorylating Thr residues in activation loops to mediate various Ca -signaling pathways. Mammalian cells expressing CaMKKα and CaMKKβ lacking Arg/Pro-rich insert domain (RP-domain) sequences showed impaired phosphorylation of AMPKα, CaMKIα, and CaMKIV, whereas the autophosphorylation activities of CaMKK mutants remained intact and were similar to those of wild-type CaMKKs. Liver kinase B1 (LKB1, an AMPK kinase) complexed with STRAD and MO25 and was unable to phosphorylate CaMKIα and CaMKIV; however, mutant LKB1 with the RP-domain sequences of CaMKKα and CaMKKβ inserted between kinase subdomains II and III acquired CaMKIα and CaMKIV phosphorylating activity in vitro and in transfected cultured cells.

View Article and Find Full Text PDF

The WNK-regulated SPAK/OSR1 kinases directly phosphorylate and inhibit the K+-Cl- co-transporters.

Biochem J

March 2014

*MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K.

Precise homoeostasis of the intracellular concentration of Cl- is achieved via the co-ordinated activities of the Cl- influx and efflux. We demonstrate that the WNK (WNK lysine-deficient protein kinase)-activated SPAK (SPS1-related proline/alanine-rich kinase)/OSR1 (oxidative stress-responsive kinase 1) known to directly phosphorylate and stimulate the N[K]CCs (Na+-K+ ion co-transporters), also promote inhibition of the KCCs (K+-Cl- co-transporters) by directly phosphorylating a recently described C-terminal threonine residue conserved in all KCC isoforms [Site-2 (Thr1048)]. First, we demonstrate that SPAK and OSR1, in the presence of the MO25 regulatory subunit, robustly phosphorylates all KCC isoforms at Site-2 in vitro.

View Article and Find Full Text PDF

Structural insights into the activation of MST3 by MO25.

Biochem Biophys Res Commun

February 2013

MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH Scotland, UK.

The MO25 scaffolding protein operates as critical regulator of a number of STE20 family protein kinases (e.g. MST and SPAK isoforms) as well as pseudokinases (e.

View Article and Find Full Text PDF

LKB1 is a tumor suppressor that is constitutionally mutated in a cancer-prone condition, called Peutz-Jeghers syndrome, as well as somatically inactivated in a sizeable fraction of lung and cervical neoplasms. The LKB1 gene encodes a serine/threonine kinase that associates with the pseudokinase STRAD (STE-20-related pseudokinase) and the scaffolding protein MO25, the formation of this heterotrimeric complex promotes allosteric activation of LKB1. We have previously reported that the molecular chaperone heat shock protein 90 (Hsp90) binds to and stabilizes LKB1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!