Hedgehog signaling in cholangiocytes.

Curr Opin Gastroenterol

Division of Gastroenterology, Duke University Medical Center, Durham, North Carolina 27710, USA.

Published: May 2011

Purpose Of Review: Cells lining the biliary tree are targets of injury, but also orchestrate liver repair. The latter involves autocrine/paracrine signaling that enhances the viability and growth of residual ductular cells and promotes accumulation of inflammatory and myofibroblastic cells. The mechanisms mediating this so-called 'ductular reaction' need to be better understood to improve injury outcomes. Studies are revealing that ductular cells produce and respond to hedgehog (Hh) ligands, developmental morphogens that control progenitor cell fate and tissue construction during embryogenesis. Because this has potential implications for liver repair, this review will summarize current knowledge about Hh signaling and cholangiocytes.

Recent Findings: Diverse types of liver injury stimulate cholangiocytes to generate Hh ligands, and cholangiocyte-derived Hh ligands interact with receptors on cholangiocytes and neighboring cells to modulate virtually every aspect of the ductular reaction to injury. Excessive Hh signaling promotes dysfunctional repair and results in chronic hepatic inflammation, fibrogenesis, and carcinogenesis.

Summary: The Hh pathway is part of the complex signaling network that orchestrates liver repair. How other pathways and posttranscriptional mechanisms modulate Hh signaling in ductular cells remains unclear. Further research in this area may identify novel therapeutic targets for the treatment of cholangiopathies and cholangiocarcinoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636549PMC
http://dx.doi.org/10.1097/MOG.0b013e32834550b4DOI Listing

Publication Analysis

Top Keywords

liver repair
12
ductular cells
12
cells
6
signaling
5
hedgehog signaling
4
signaling cholangiocytes
4
cholangiocytes purpose
4
purpose review
4
review cells
4
cells lining
4

Similar Publications

A mitochondria-targeted nanozyme with enhanced antioxidant activity to prevent acute liver injury by remodeling mitochondria respiratory chain.

Biomaterials

January 2025

Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, PR China. Electronic address:

Developing nanomedicines with enhanced activity to scavenge reactive oxygen species (ROS) has emerged as a promising strategy for addressing ROS-associated diseases, such as drug-induced liver injury. However, designing nanozymes that not only remove ROS but also accelerate the repair of damaged liver cells remains challenging. Here, a two-pronged black phosphorus/Ceria nanozyme with mitochondria-targeting ability (TBP@CeO) is designed.

View Article and Find Full Text PDF

Triptolide's impact on ACER1 signaling: Inducing autophagy for triple-negative breast cancer suppression.

Pathol Res Pract

January 2025

Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, Guilin 541001, China; Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin 541001, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, China; China-USA Lipids in Health and Disease Research Center, Guilin Medical University,Guilin 541001, China; Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, China. Electronic address:

Given the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (Her-2) in triple-negative breast cancer (TNBC) cells, the efficacy of targeted therapies is limited. In this study, we uncovered that triptolide (TP) effectively suppresses the migration and invasiveness of MDA-MB-231 cells by activating autophagic pathways. Western blotting analysis revealed that TP significantly reduced the expression levels of p62 protein, while simultaneously markedly increasing the expression levels of LC3B-II, BNIP3, BNIP3L, ATG5, and ULK1 proteins, strongly suggesting an enhancement of autophagic activity in the cells.

View Article and Find Full Text PDF

This work researched the influence and mechanism of CD155 on hepatocellular carcinoma advancement. CD155 expression and its effect on survival of hepatocellular carcinoma patients were analyzed based on the GEPIA2 database. String software predicted the interacting between CD155 and CD96, which was further verified by co-immunoprecipitation experiment.

View Article and Find Full Text PDF

Natural products are valuable medicinal resources in the field of anti-inflammation due to their significant bioactivity and low antibiotic resistance. Research has demonstrated that many natural products exert notable anti-inflammatory effects by modulating the Toll-like receptor 4 (TLR4) and nuclear factor kappa B (NF-κB) signaling pathways. The research on related signal transduction mechanisms and pharmacological mechanisms is increasingly being discovered and validated.

View Article and Find Full Text PDF

Linn., commonly known as the 'Tree of Sadness' belongs to Oleaceae family. In Ayurvedic, Siddha, Unani, and Homeopathic therapeutic systems, it has been used to treat various conditions, including ulcers, skin diseases, hair loss, piles, liver diseases, rheumatism, and malarial fevers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!