In this review, I introduce the strategy developed by our laboratory to explore the mechanisms of renoprotection against progressive glomerulosclerosis leading to renal death. First, I describe the experimental rat model in which disturbances of vascular regeneration and glomerular hemodynamics lead to irreversible glomerulosclerosis. Second, I discuss the possible mechanisms determining the progression of glomerulosclerosis and introduce a new imaging system based on intravital confocal laser scanning microscopy. Third, I provide an in-depth review of the regulatory glomerular hemodynamics at the cellular and molecular levels while focusing on the pivotal role of Ca(2+)-dependent gap junctional intercellular communication in coordinating the behavior of mesangial cells. Last, I show that local delivery of renoprotective agents, in combination with diagnostic imaging of the renal microvasculature, allows the evaluation of the therapeutic effects of angiotensin II receptor and cyclooxygenase activity local blockade on the progression of glomerulosclerosis, which would otherwise lead to renal death.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3066542 | PMC |
http://dx.doi.org/10.2183/pjab.87.81 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!