A single-crystal X-ray diffraction study of the effect of cooling down to 100 K on the β-form of chlorpropamide, 4-chloro-N-(propylaminocarbonyl)benzenesulfonamide, has revealed reversible phase transitions at ∼257 K and between 150 and 125 K: β (Pbcn, Z' = 1) ⇔ β(II) (P2/c, Z' = 2) ⇔ β(III) (P2/n, a' = 2a, Z' = 4); the sequence corresponds to cooling. Despite changes in the space group and number of symmetry-independent molecules, the volume per molecule changes continuously in the temperature range 100-300 K. The phase transition at ∼257 K is accompanied by non-merohedral twinning, which is preserved on further cooling and through the second phase transition, but the original single crystal does not crack. DSC (differential scanning calorimetry) and X-ray powder diffraction investigations confirm the phase transitions. Twinning disappears on heating as the reverse transformations take place. The second phase transition is related to a change in conformation of the alkyl tail from trans to gauche in 1/4 of the molecules, regularly distributed in the space. Possible reasons for the increase in Z' upon cooling are discussed in comparison to other reported examples of processes (crystallization, phase transitions) in which organic crystals with Z' > 1 have been formed. Implications for pharmaceutical applications are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/S0108768111004290 | DOI Listing |
Sensors (Basel)
December 2024
Kotelnikov Institute of Radio Engineering and Electronics of RAS, Moscow 125009, Russia.
An important technical task is to develop methods for recording the phase transitions of water to ice. At present, many sensors based on various types of acoustic waves are suggested for solving this challenge. This paper focuses on the theoretical and experimental study of the effect of water-to-ice phase transition on the properties of Lamb and quasi shear horizontal (QSH) acoustic waves of a higher order propagating in different directions in piezoelectric plates with strong anisotropy.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Jurong West 639798, Singapore.
Tan Delta reflects the viscoelastic behavior of materials, particularly polymers. In most cases, a high Tan Delta value is associated with transitions (such as glass transition or melting), enabling effective damping properties near these temperature ranges. However, achieving a high Tan Delta over a broad temperature range is challenging, particularly for engineering applications that involve significant temperature fluctuations.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
School of Physical & Chemical Sciences, Queen Mary University of London, Joseph Priestley Building, Mile End Road, London E1 4NS, UK.
Microgels, combining the properties of hydrogels and microparticles, are emerging as versatile materials for varied applications such as drug delivery and sensing, although the precise control of particle size remains a challenge. Advances in synthetic methodologies have provided new tools for tailoring of properties, however costs and scalability of the processes remains a limitation. We report here the water-based synthesis of a library of -isopropylacrylamide-based microgels covalently crosslinked with varying contents of ,-methylenebisacrylamide.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
A series of novel amphiphilic alternating CPEG copolymers were synthesized through an amine-epoxy click reaction comprising aliphatic amine and polyethylene glycol diglycidyl ether (PEGDE). These polymers were characterized in detail via nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) to confirm the successful synthesis. Due to their amphiphilic structure, these polymers display thermoresponsiveness, with tunable cloud points (Tcps) that are adjustable from 20.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
PEA 46 is a biobased polymer with promising properties for sustainable packaging applications, which can be obtained via polymerization of a furan 2,5-dicarboxylic acid (2,5-FDCA) derivative and a diol monomer containing internal amide bonds (46 amido diol). In the literature, PEA 46 showed a complex series of thermal transitions during DSC scans. For this reason, in this initial exploratory study PEA 46 was subjected to compression molding and the melting behavior of film samples was investigated with parallel DSC and WAXS analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!