Signal processing in first- and second-order vestibular neurons.

J Vestib Res

Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, 2300 I Street NW, Washington, DC, USA.

Published: August 2011

Download full-text PDF

Source
http://dx.doi.org/10.3233/VES-2011-0398DOI Listing

Publication Analysis

Top Keywords

signal processing
4
processing first-
4
first- second-order
4
second-order vestibular
4
vestibular neurons
4
signal
1
first-
1
second-order
1
vestibular
1
neurons
1

Similar Publications

Toward a Free-Response Paradigm of Decision-Making in Spiking Neural Networks.

Neural Comput

January 2025

Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200437, China

Spiking neural networks (SNNs) have attracted significant interest in the development of brain-inspired computing systems due to their energy efficiency and similarities to biological information processing. In contrast to continuous-valued artificial neural networks, which produce results in a single step, SNNs require multiple steps during inference to achieve a desired accuracy level, resulting in a burden in real-time response and energy efficiency. Inspired by the tradeoff between speed and accuracy in human and animal decision-making processes, which exhibit correlations among reaction times, task complexity, and decision confidence, an inquiry emerges regarding how an SNN model can benefit by implementing these attributes.

View Article and Find Full Text PDF

Discovery of Potent, Highly Selective, and Orally Bioavailable MTA Cooperative PRMT5 Inhibitors with Robust Antitumor Activity.

J Med Chem

January 2025

Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China.

Protein arginine methyltransferase 5 (PRMT5), which catalyzes the symmetric dimethylation of arginine residues on target proteins, plays a critical role in gene expression regulation, RNA processing, and signal transduction. Aberrant PRMT5 activity has been implicated in cancers and other diseases, making it a potential therapeutic target. Here, we report the discovery of a methylthioadenosine (MTA) cooperative PRMT5 inhibitor.

View Article and Find Full Text PDF

High-resolution awake mouse fMRI at 14 tesla.

Elife

January 2025

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, United States.

High-resolution awake mouse functional magnetic resonance imaging (fMRI) remains challenging despite extensive efforts to address motion-induced artifacts and stress. This study introduces an implantable radio frequency (RF) surface coil design that minimizes image distortion caused by the air/tissue interface of mouse brains while simultaneously serving as a headpost for fixation during scanning. Furthermore, this study provides a thorough acclimation method used to accustom animals to the MRI environment minimizing motion-induced artifacts.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Bernard and Irene Schwartz Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY, USA.

Background: Amyloid related imaging abnormalities (ARIA), a group of neuropathological features seen in anti-amyloid immunotherapy patients, arises partly from CAA (Aβ buildup in blood vessels). Squirrel monkeys (SQMs), developing prominent age-related CAA exceeding brain Aβ, offer a unique NHP model for ARIA study. Evaluating edema-related neurobiological defects (ARIA-E) involves preferential use of T-weighted (T-w) and flow-attenuated inversion recovery (FLAIR) MRI while T*-weighted (T*-w) MRI is better suited for investigating iron-related pathology like microbleeds, hemorrhaging, and iron-homing in plaques.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Background: The brain's ability to perform a cognitive task is a dynamic process and requires small blood vessels to dilate or constrict in real time to adjust blood flow in a region-specific manner. Cerebrovascular Reactivity (CVR) measures the ability of vessels to react to vasoactive challenges. In this work, we investigated the role of CVR as a possible biomarker in small vessel disease related vascular contributions to cognitive impairment and dementia (VCID), as part of the NINDS-funded MarkVCID study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!