Perspectives on surface science.

J Phys Condens Matter

Universidad Autónoma de Madrid, Spain.

Published: March 2010

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/22/8/080302DOI Listing

Publication Analysis

Top Keywords

perspectives surface
4
surface science
4
perspectives
1
science
1

Similar Publications

We studied freshly collected, dried and herbarized leaf fragments of two palms, namely L. and L., most commonly used for palm-leaf manuscript (PLM) production in South (S) and Southeast Asia (SE) in order to reveal differences in their phytolith assemblages.

View Article and Find Full Text PDF

Humic acid (HA) enhances colloidal transport in porous media, yet the mechanisms by which the HA adsorption conformation affects colloid transport remain unclear. This study investigated the influence of HA on the transport of petroleum-hydrocarbon-contaminated soil colloids (TPHs-SC) in saturated sand columns. The presence of TPHs on the colloidal surface occupied adsorption sites, hindering HA from forming a horizontal adsorption conformation, as observed on uncontaminated soil colloids (SC).

View Article and Find Full Text PDF

Establishing and regulating the ferroelectric polarization in ferroelectric nano-scale catalysts has been recognized as an emerging strategy to advance water splitting reactions, with the merits of improved surface charge density, high charge transfer rate, increased electronic conductivity, the creation of real active sites, and optimizing the chemisorption energy. As a result, engineering and tailoring the ferroelectric polarization induced internal electric field provides significant opportunities to improve the surface and electronic characteristics of catalysts, thereby enhancing the water splitting reaction kinetics. In this review, an interdisciplinary and comprehensive summary of recent advancements in the construction, characterization, engineering and regulation of the polarization in ferroelectric-based catalysts for water splitting is provided, by exploiting a variety of external stimuli.

View Article and Find Full Text PDF

Optical neural implants allow neuroscientists to access deep brain regions, enabling to decipher complex patterns of neural activity. In this field, the use of optical fibers is rapidly increasing, and the ability to generate high-quality metal patterns on their non-planar surface would further extend their application. Here, we propose to use alternating metal shielding and dielectric confinement to engineer the mode-division properties of tapered optical fiber neural implants.

View Article and Find Full Text PDF

Interactive effects of soil dissolved organic matter (DOM) and Per- and polyfluoroalkyl substances on contaminated soil site: DOM molecular-level perspective.

J Hazard Mater

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.

Dissolved organic matter (DOM), as the most active soil component, plays a crucial role in regulating the transport of contaminants. Per- and polyfluoroalkyl substances (PFAS) have been found to be widespread contaminants in the soil environment, and their migration would be also affected by DOM. Herein, the surface and subsurface soil samples collected from two PFAS manufacturing factories were studied for the variation characteristics of DOM under PFAS contamination, and the interaction between DOM and PFAS in soil was further explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!