Aims: Hyperglycaemia (HG) decreases intracellular tetrahydrobiopterin (BH(4)) concentrations, and this action may contribute to injury during myocardial ischaemia and reperfusion. We investigated whether increased BH(4) by cardiomyocyte-specific overexpression of the GTP cyclohydrolase (GTPCH) 1 gene rescues myocardial and mitochondrial protection by ischaemic preconditioning (IPC) during HG through a nitric oxide (NO)-dependent pathway.

Methods And Results: Mice underwent 30 min of myocardial ischaemia followed by 2 h of reperfusion with or without IPC elicited with four cycles of 5 min ischaemia/5 min of reperfusion in the presence or absence of HG produced by d-glucose. In C57BL/6 wild-type mice, IPC increased myocardial BH(4) and NO concentrations and decreased myocardial infarct size (30 ± 3% of risk area) compared with control (56 ± 5%) experiments. This protective effect was inhibited by HG (48 ± 3%) but not hyperosmolarity. GTPCH-1 overexpression increased myocardial BH(4) and NO concentrations and restored cardioprotection by IPC during HG (32 ± 4%). In contrast, a non-selective NO synthase inhibitor N(G)-nitro-l-arginine methyl ester attenuated the favourable effects of GTPCH-1 overexpression (52 ± 3%) during HG. Mitochondria isolated from myocardium subjected to IPC required significantly higher in vitro Ca(2+) concentrations (184 ± 14 µmol mg(-1) protein) to open the mitochondrial permeability transition pore when compared with mitochondria isolated from control experiments (142 ± 10 µmol mg(-1) protein). This beneficial effect of IPC was reversed by HG and rescued by GTPCH-1 overexpression.

Conclusion: Increased BH(4) by cardiomyocyte-specific overexpression of GTPCH-1 preserves the ability of IPC to elicit myocardial and mitochondrial protection that is impaired by HG, and this action appears to be dependent on NO.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3125073PMC
http://dx.doi.org/10.1093/cvr/cvr079DOI Listing

Publication Analysis

Top Keywords

bh4 concentrations
12
overexpression gtp
8
gtp cyclohydrolase
8
ischaemic preconditioning
8
myocardial ischaemia
8
ischaemia reperfusion
8
increased bh4
8
bh4 cardiomyocyte-specific
8
cardiomyocyte-specific overexpression
8
myocardial mitochondrial
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!