The structural basis for Ca2+ transport was examined in vesicles reconstituted with an excess of phospholipid by a cholate dialysis procedure. Unincorporated protein and vesicles with a relatively high protein content were removed by sucrose density centrifugation (3-12%), leaving a fraction of lipid-rich vesicles (lipid to protein weight ratio 800-900:1) with a high coupling ratio (1.0) and transport capacity (25 mumol/mg protein, after Ca-phosphate loading). Freeze-fracture analysis showed that the reconstituted vesicles had a remarkably narrow size distribution (diameter 794 +/- 77 A (S.D.], suitable for stereological analysis. Intramembranous particles were dispersed and occurred with a low frequency in the fractured shells, also before sucrose fractionation. It was calculated that the number of intramembranous particles corresponded to the number of Ca2(+)-ATPase polypeptide/vesicle. A ratio of unity between particles and polypeptide chains was also obtained from the density of particle distribution on flat surfaces of fused vesicles, prepared by sucrose fractionation. The size of the particles formed a broad distribution, having a peak value around 60-67 A, both in the reconstituted preparation and sarcoplasmic reticulum vesicles. No evidence for protein-protein interactions was found in chemical cross-linking experiments. It is concluded that the intramembranous particles in the reconstituted preparations are referable to monomeric Ca2(+)-ATPase which is capable of transporting Ca2+ inside the vesicles. The implications of the observations for the associational state of Ca2(+)-ATPase at high protein concentration are considered in relation to previous ultrastructural investigations of membranous Ca2(+)-ATPase in native and two-dimensional-crystalline forms.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!