Our previous studies found strict gene silencing associated with CaMV-35S promoter-specific de novo methylation in transgenic gentian plants. To dissect the de novo methylation machinery, especially in association with histone modification, 35S-driven sGFP-expressing and -silenced gentian cultured cell lines that originated from a single transformation event were produced and used for epigenetic analyses. A sGFP-expressing primarily induced cell suspension culture (PS) was hypomethylated in the 35S promoter region, although a low level of de novo methylation at the 35S enhancer region (-148 to -85) was detected. In contrast, a sGFP-silenced re-induced cell suspension culture (RS), which originated from leaf tissues of a transgenic plant, was hypermethylated in the 35S promoter region. Chromatin immunoprecipitation analysis showed that in RS, histone H3 of the silenced 35S promoter region was deacetylated and also dimethylated on lysine 9. Interestingly, in the silenced 35S promoter 3' region, dimethylation of histone H3 lysine 4 was also observed. When hypomethylation and histone H3 acetylation of the 35S region occurred in PS, de novo methylation at the 35S enhancer region had already taken place. The de novo methylation status was also resistant to 5-aza-2'-deoxycytidine treatment. These results suggest that de novo methylation of the enhancer region is a primitive process of 35S silencing that triggers histone H3 deacetylation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2011.01.008DOI Listing

Publication Analysis

Top Keywords

novo methylation
24
35s promoter
20
promoter region
16
enhancer region
12
35s
9
cell suspension
8
suspension culture
8
region
8
methylation 35s
8
35s enhancer
8

Similar Publications

Dnmt3a-mediated DNA Methylation Regulates P. gingivalis-suppressed Cementoblast Mineralization Partially Via Mitochondria-dependent Apoptosis Pathway.

Inflammation

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.

Background: DNA methyltransferase 3A (Dnmt3a) is an enzyme that catalyzes the de novo methylation of DNA, and plays essential roles in a wide range of physiological and pathological processes. However, it remains unclear whether Porphyromonas gingivalis affects cementoblasts, the cells responsible for cementum formation, through Dnmt3a.

Methods: The samples were collected from models of mouse periapical lesions and mice of different ages, and the expression of Dnmt3a was detected through immunofluorescence.

View Article and Find Full Text PDF

Ectopic expression of DNMT3L in human trophoblast stem cells restores features of the placental methylome.

Cell Stem Cell

December 2024

Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK. Electronic address:

The placental DNA methylation landscape is unique, with widespread partially methylated domains (PMDs). The placental "methylome" is conserved across mammals, a shared feature of many cancers, and extensively studied for links with pregnancy complications. Human trophoblast stem cells (hTSCs) offer exciting potential for functional studies to better understand this epigenetic feature; however, whether the hTSC epigenome recapitulates primary trophoblast remains unclear.

View Article and Find Full Text PDF

Public Health.

Alzheimers Dement

December 2024

Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany.

Background: Alzheimer's disease (AD) is the most common etiology of dementia. As the progression of the disease may be slowed down by disease-modifying therapies, but not stopped, research identifying further therapeutic approaches is necessary. Due to the multifactorial etiology of AD, targeting modifiable risk factors for dementia, including diet, is a starting point for preventive interventions.

View Article and Find Full Text PDF

In the germ line and during early embryogenesis, DNA methylation (DNAme) undergoes global erasure and re-establishment to support germ cell and embryonic development. While DNAme acquisition during male germ cell development is essential for setting genomic DNA methylation imprints, other intergenerational roles for paternal DNAme in defining embryonic chromatin are unknown. Through conditional gene deletion of the de novo DNA methyltransferases Dnmt3a and/or Dnmt3b, we observe that DNMT3A primarily safeguards against DNA hypomethylation in undifferentiated spermatogonia, while DNMT3B catalyzes de novo DNAme during spermatogonial differentiation.

View Article and Find Full Text PDF

Clinical and Cytogenetic Impact of Maternal Balanced Double Translocation: A Familial Case of 15q11.2 Microduplication and Microdeletion Syndromes with Genetic Counselling Implications.

Genes (Basel)

November 2024

Laboratório de Citogenética Clínica, Centro de Genética Médica, Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira-Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil.

Background: Balanced chromosomal translocations occur in approximately 0.16 to 0.20% of live births.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!