Arabidopsis poly(ADP-ribose) glycohydrolase 1 is required for drought, osmotic and oxidative stress responses.

Plant Sci

National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University-Huajiachi Campus, Hangzhou, Zhejiang 310029, People's Republic of China.

Published: February 2011

Poly(ADP-ribosyl)ation is a post-translational protein modification that plays important roles in many cellular processes in mammalian systems. Emerging evidence indicates that poly(ADP-ribosyl)ation is also involved in plant growth, development, and stress responses. In the present study, we used genetic mutant parg1-3 and transgenic PARG1-overexpressing Arabidopsis plants to examine the role of poly(ADP-ribose) glycohydrolase1 (PARG1) in abiotic stress resistance. Osmotic (mannitol treatment) or oxidative [methyl viologen (MV) treatment] stress reduced germination rates of the parg1-3 seeds compared with wild type seeds. The parg1-3 plants showed reduced tolerance to drought (withholding water), osmotic, and oxidative stress, as well as increased levels of cell damage under osmotic and oxidative stress and reduced survival under drought stress when compared with the wild type plants. Stomata of the parg1-3 plants failed to close under drought stress conditions. The expression level of oxidative stress-related genes AtAox1 and AtApx2 in the parg1-3 plants was reduced after MV treatment. However, when PARG1 was overexpressed in the parg1-3 mutant and the wild type Col-0 background, similar phenotypical changes to wild type were noted in response to drought, osmotic, or oxidative stress. These results suggest a function for PARG1 in abiotic stress responses in Arabidopsis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2010.09.002DOI Listing

Publication Analysis

Top Keywords

osmotic oxidative
16
oxidative stress
16
wild type
16
stress responses
12
parg1-3 plants
12
stress
10
drought osmotic
8
parg1 abiotic
8
abiotic stress
8
stress reduced
8

Similar Publications

Drought stress poses a serious threat to agricultural productivity worldwide. This study investigated the mitigative effects of exogenous spermidine on drought stressed yarrow ( L.).

View Article and Find Full Text PDF

Enhancing soybean germination and vigor under water stress: the efficacy of bio-priming with sodium carboxymethyl cellulose and gum arabic.

Front Plant Sci

January 2025

National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.

Seed priming can significantly enhance the tolerance of soybean against different environmental stresses by improving seed water uptake and modulating stress-response mechanisms. In particular, seed priming with sodium carboxymethylcellulose (SCMC) and gum Arabic (GA) can support seeds to withstand extreme conditions better, promoting more consistent germination and robust seedling establishment, which is crucial for achieving stable agricultural yields. The present study investigated the effects of seed priming using a combination of SCMC and GA (10% CG) on the germination, growth, and biochemical responses of six soybean varieties under drought and flooding stress conditions.

View Article and Find Full Text PDF

Background: Storage of packed red blood cells (RBCs) for transfusion leads to biochemical and morphological changes, increasing hemolysis risk. Urate levels in blood bags at donation contribute to the molecular heterogeneity and hemolytic propensity of stored RBCs. However, studies to date have been underpowered to investigate at scale the contribution of donor demographics and genetics to the heterogeneity in urate levels across donations.

View Article and Find Full Text PDF

In order to address the issue of food contamination by microorganisms and effectively harness the antibacterial properties of nisin, we attempted to incorporate nisin into natural polymer films while addressing its inherent instability. An antibacterial food packaging film based on carboxymethyl chitosan (CCS) binding with L-cysteine (CYS) and oxidized konjac glucomannan (OKG) was developed through both Schiff base reaction and addition reaction of thiol aldehyde. To analyze the effect of addition reaction of thiol aldehyde on the CCS-CYS/OKG films' physicochemical properties, the CCS-CYS was prepared with different CYS combination rates, which were further used to fabricate composite films.

View Article and Find Full Text PDF

Soil salinity and alkalinity severely suppress plant growth and crop yields. This study compared the effects of neutral and alkaline salt exposure, both individually and mixed, on metal content and morphophysiological responses in halophyte Haloxylon ammodendron. Our results showed that alkaline salt exposure more considerably inhibited the growth and photosynthesis of H.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!