The Marennes-Oléron Bay, hosting the largest oyster production in France, is influenced by the historic polymetallic pollution of the Gironde Estuary. Despite management efforts and decreasing emissions in the Gironde watershed, cadmium levels in oysters from the bay are close to the consumption limit (5 μg g(-1) dw, EC). From mid April to mid July 2009, we investigated the role of tidal resuspension and regional hydrodynamics on Cd speciation (seawater, SPM, phytoplankton, sediment, microphytobenthos) and bioaccumulation in 18 month-old oysters (gills, digestive glands, rests of tissues) reared under natural conditions (i) at ∼60 cm above the sediment and (ii) on the sediment surface. Dissolved and particulate Cd concentrations in surface and bottom waters were similar and constant over tidal cycle suggesting the absence of Cd release during sediment resuspension. Temporal dissolved and particulate Cd concentrations were closely related to Gironde Estuary water discharges, showing increasing concentrations during flood situations and decreasing concentrations afterwards. Cd depletion in the water column was associated with increasing Cd in the [20-100 μm] plankton fraction, suggesting Cd bioaccumulation. After 3 months, enrichment factors of Cd in tissues of oysters exposed in the water column and directly on the sediment were respectively 3.0 and 2.2 in gills, 4.7 and 3.2 in digestive glands and 4.9 and 3.4 in remaining tissues. Increasing Cd bioaccumulation in gills, digestive glands and remaining tissues can be related to elevated dissolved Cd in the bay, suggesting gill contamination via the direct pathway and subsequent internal redistribution of Cd to other organs and tissues. Elevated Cd contents in oysters reared on tables could be attributed to different trophic Cd transfer (phytoplankton versus microphytobenthos) or to different oyster metabolisms between the rearing conditions as suggested by metallothionein concentrations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2011.02.051 | DOI Listing |
Environ Res
January 2025
The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China. Electronic address:
The bioaccumulation and toxic effects of synthetic phenolic antioxidants (SPAs) in aquatic ecosystems are of growing concern due to their widespread use and potential environmental persistence. This study investigated the detoxification and toxicological impacts of 2,6-ditert-butyl-4-methylphenol (BHT), a representative SPAs, on clams Ruditapes philippinarum using environmentally relevant exposure concentrations. BHT bioaccumulation was observed in both gills and digestive glands, with higher levels in the latter.
View Article and Find Full Text PDFToxicol Rep
June 2025
Department of Zoology, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India.
After being exposed, microplastics mostly bioaccumulated in guts and gills of fish, then, through circulation, spread and bioaccumulated in other tissues. Circulatory system of fish is impacted by the microplastic bioaccumulation in their tissues, influencing a number of hematological indices that are connected with immunity, osmotic pressure, blood clotting, molecular transport and fat metabolism. Variables like size, dose, duration, food consumption and species, all affect the bioaccumulation and toxicity of the microplastic, rather than the exposure routes.
View Article and Find Full Text PDFEcotoxicology
January 2025
Laboratory of Ecology and Conservation, Faculty of Biology, Universitas Gadjah Mada, Sleman, Yogyakarta, Indonesia.
Many contaminants from scattered sources constantly endanger streams that flow through heavily inhabited areas, commercial districts, and industrial hubs. The responses of transplanted mussels in streams in active biomonitoring programs will reflect the dynamics of environmental stream conditions. This study evaluated the untargeted metabolomic and proteomic responses and free radical scavenging activities of transplanted mussels Sinanodonta woodiana in the Winongo Stream at three stations (S1, S2, S3) representing different pollution levels: low (S1), high (S2), and moderate (S3).
View Article and Find Full Text PDFToxics
November 2024
Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China.
Microplastics pollution in freshwater systems is attracting increasing attention. However, our knowledge of its combined toxicity with heavy metals is scarce. In this study, was used as the model animal to study the combined poisoning mechanism of cadmium or microplastics on the digestive systems of tadpoles in freshwater.
View Article and Find Full Text PDFPathogens
December 2024
Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, Republic of Korea.
White spot syndrome virus (WSSV) poses a major risk to shrimp aquaculture, and filter-feeding bivalves on shrimp farms may contribute to its persistence and transmission. This study investigated the bioaccumulation and vector potential of WSSV in Pacific oysters (), blue mussels (), and manila clams () cohabiting with WSSV-infected shrimp. Sixty individuals of each species (average shell lengths: 11.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!