Carbon nanoparticle ionic liquid hybrids and their photoluminescence properties.

J Colloid Interface Sci

Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, PR China.

Published: June 2011

A fluorescent carbon nanoparticle ionic liquid hybrids (CNPIL) with high conductivity is synthesized by a facile one-step microwave method from ionic liquid 1-butyl-3-methylimidazolium glutamine salt and Glucose. This CNPIL exhibits excellent PL properties: bright and colorful PL covering the entire visible-NIR spectral range, up conversion PL properties, pH dependent and can be controlled by the reaction condition.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2011.02.061DOI Listing

Publication Analysis

Top Keywords

ionic liquid
12
carbon nanoparticle
8
nanoparticle ionic
8
liquid hybrids
8
hybrids photoluminescence
4
photoluminescence properties
4
properties fluorescent
4
fluorescent carbon
4
hybrids cnpil
4
cnpil high
4

Similar Publications

Solid polymer electrolytes (SPEs) with mechanical strength and reduced flammability may also enable next-generation Li batteries with higher energy densities. However, conventional SPEs have fundamental limitations in terms of Li conductivity. While an imidazole functionalized polymer (PMS-Im) has been previously shown to have ionic conductivity related to the imidazole-Li coordination, herein we demonstrate that quaternization of this polymer to form an analogous imidazolium functionalized polymer (PMS-Im) more efficiently solvates lithium salts and plasticizes the polymer.

View Article and Find Full Text PDF

The adsorption and aggregation of amphiphiles at different solvent interfaces are of great scientific and technological importance. In this study, interfacial tension measurements of surface-active compounds-ionic liquid 2-dodecyl-2,2dimethylethanolammonium bromide (12Cho.Br) and cationic surfactant cetyltrimethylammonium bromide (CTAB)-were conducted both in the absence and presence of ciprofloxacin (CIP).

View Article and Find Full Text PDF

Research into flexible solid-state supercapacitors for wearable electronics focuses on achieving high performance and safety. Gel polymer electrolytes (GPEs) are preferred over fully solid-state electrolytes due to their better ionic conductivity while addressing safety concerns associated with liquid electrolytes. This study aims to enhance high-performance gel polymer electrolytes (HP-GPEs) by improving the ion transfer rate of polyvinyl alcohol (PVA) with sulfonated hexagonal boron nitride (known as white-graphene) and exploring how rheology influences ion-conduction within HP-GPEs.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how the surface properties and electrical conductivity of betaine-based ionic liquids change when mixed with different concentrations of gabapentin at a specific temperature.
  • The findings show that as gabapentin concentration and the length of the alkyl chain increase, surface tension decreases, indicating stronger interactions.
  • Additionally, micellization parameters improve with longer chains, while conductivity decreases at higher gabapentin concentrations due to increased viscosity and ion interactions.
View Article and Find Full Text PDF

The characteristics of temperature-responsive ionic liquids on the integrated operational effectiveness of water reclamation from semiconductor wastewater using forward osmosis.

Chemosphere

December 2024

Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan, ROC; Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan 33323, Taiwan, ROC; Biochemical Technology R&D Center, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC; Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan, ROC. Electronic address:

Large amounts of wastewater are produced from semiconductor manufacturing, and the production energy consumption has skyrocketed with its global demand in recent years. Forward osmosis (FO) provides unique merits in reclaiming the wastewater if suitable draw solutes with high water flux, low leakage, and limited energy requirement in regeneration are available. Two lower critical solution temperature-ionic liquids (LCST-ILs), tetrabutylphosphonium trimethylbenzensulfonate ([P][TMBS]) and tetrabutylphosphonium maleate ([P][Mal]) were synthesized and systematically assessed as recycled draw solutes in FO for the water reclamation from the wastewater of Si-ingot sawing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!