This study evaluated the physical stability and molecular mobility of a poorly water-soluble amorphous drug, 2-benzyl-5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2H-pyridazin-3-one (K-832), adsorbed onto silica mesopores. K-832-Sylysia 740 and K-832-Sylysia 350 formulations, prepared by adsorbing K-832 onto porous silica Sylysia 740 (2.5-nm-diameter pores) and Sylysia 350 (21-nm-diameter pores) and stored at 60°C/80%RH (open and closed conditions), were investigated. Differential scanning calorimetry revealed that crystallization of K-832 in the K-832-Sylysia 350 formulation stored at 60°C/80%RH (open and closed conditions) was faster than that of the other formulation stored under identical conditions. Raman spectroscopy revealed shifts to higher wavenumbers in the K-832-Sylysia 350 and K-832-Sylysia 740 formulations (1497 and 1493 cm(-1), respectively) in comparison to amorphous K-832 (1481 cm(-1)); however, no distinct differences were observed in the spectra of the two formulations. Solid-state (13)C NMR spectroscopy revealed a difference in spin-lattice relaxation time in the rotating frame (T(1ρ)) between the two formulations, suggesting the lower molecular mobility of K-832 in the 2.5-nm-diameter pores than in the 21-nm-diameter pores. Thus, the crystallization rate of amorphous K-832 in the K-832-Sylysia 740 formulation was much slower. These results will be useful in estimating the physical stability of amorphous drugs in mesopores.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2011.03.030DOI Listing

Publication Analysis

Top Keywords

molecular mobility
12
k-832-sylysia 740
12
k-832-sylysia 350
12
stability amorphous
8
amorphous drug
8
drug 2-benzyl-5-4-chlorophenyl-6-[4-methylthiophenyl]-2h-pyridazin-3-one
8
silica mesopores
8
solid-state 13c
8
13c nmr
8
nmr spectroscopy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!