C-sequence of the Dictyostelium cytoplasmic dynein participates in processivity modulation.

FEBS Lett

Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, Japan.

Published: April 2011

We examined the functional roles of C-sequence, a 47-kDa non-AAA+ module at the C-terminal end of the 380-kDa Dictyostelium dynein motor domain. When the distal segment of the C-sequence was deleted from the motor domain, the single-molecule processivity of the dimerized motor domain was selectively impaired without its ensemble motile ability and ATPase activity being severely affected. When the hinge-like sequence between the distal and proximal C-sequence segments was made more or less flexible, the dimeric motor showed lower or higher processivity, respectively. These results suggest a potential function of the distal C-sequence segment as a modulator of processivity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2011.03.036DOI Listing

Publication Analysis

Top Keywords

motor domain
12
c-sequence
5
c-sequence dictyostelium
4
dictyostelium cytoplasmic
4
cytoplasmic dynein
4
dynein participates
4
processivity
4
participates processivity
4
processivity modulation
4
modulation examined
4

Similar Publications

Cerebral palsy (CP) manifests with abnormal posture and impaired selective motor control, notably affecting trunk control and dynamic balance coordination, leading to inadequate postural control. Previous research has indicated the benefits of pulsed electromagnetic field (PEMF) therapy for various musculoskeletal and neurological conditions. Therefore, we conducted a randomized pilot study to assess the feasibility of our preliminary research design and examine the effect of the PEMF treatment among children with CP.

View Article and Find Full Text PDF

Telerehabilitation and Its Impact Following Stroke: An Umbrella Review of Systematic Reviews.

J Clin Med

December 2024

Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, Medical School, University of Exeter, Exeter EX1 2LU, UK.

: To summarize the impact of various telerehabilitation interventions on motor function, balance, gait, activities of daily living (ADLs), and quality of life (QoL) among patients with stroke and to determine the existing telerehabilitation interventions for delivering physiotherapy sessions in clinical practice. : Six electronic databases were searched to identify relevant quantitative systematic reviews (SRs). Due to substantial heterogeneity, the data were analysed narratively.

View Article and Find Full Text PDF

Tetrameric PilZ protein stabilizes stator ring in complex flagellar motor and is required for motility in .

Proc Natl Acad Sci U S A

January 2025

Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China.

Rotation of the bacterial flagellum, the first identified biological rotary machine, is driven by its stator units. Knowledge gained about the function of stator units has increasingly led to studies of rotary complexes in different cellular pathways. Here, we report that a tetrameric PilZ family protein, FlgX, is a structural component underneath the stator units in the flagellar motor of .

View Article and Find Full Text PDF

Background: Animal-assisted interventions (AAIs) have emerged as a promising nonpharmacological intervention option for children diagnosed with attention-deficit/hyperactivity disorder (ADHD). However, recent systematic reviews have been primarily narrative. Additionally, the pooled effectiveness of AAIs was absent from these systematic reviews.

View Article and Find Full Text PDF

Purpose: Due to the highly individualized clinical manifestation of Parkinson's disease (PD), personalized patient care may require domain-specific assessment of neurological disability. Evidence from magnetic resonance imaging (MRI) studies has proposed that heterogenous clinical manifestation corresponds to heterogeneous cortical disease burden, suggesting customized, high-resolution assessment of cortical pathology as a candidate biomarker for domain-specific assessment.

Method: Herein, we investigate the potential of the recently proposed Mosaic Approach (MAP), a normative framework for quantifying individual cortical disease burden with respect to a population-representative cohort, in predicting domain-specific clinical progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!