Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cross-slopes are a common terrain characteristic, however there is no biomechanical knowledge of the intra-foot adaptations required for running on these surface inclinations. The purpose of this study was to evaluate the kinematic changes induced within the foot while running on a transversely inclined surface. A three-segment foot model distinguishing between the hindfoot, forefoot, and hallux was used for this purpose. Nine healthy experienced male runners volunteered to perform level (0°) and cross-slope (10°) running trials barefoot at a moderate speed. Multivariate analysis of variance (MANOVA) for repeated measures was used to analyze the kinematics of the hindfoot with respect to tibia (HF/TB), forefoot with respect to hindfoot (FF/HF), and hallux with respect to forefoot (HX/FF) during level running (LR), incline running up-slope (IRU), and incline running down-slope (IRD) conditions. In the sagittal plane, the FF/HF angle showed greater dorsiflexion at peak vertical force production (MaxFz) in IRD compared to LR (p=0.042). The HX/FF was significantly more extended during IRU than LR at foot strike (p=0.027). More importantly, frontal plane asymmetries were also found. HF/TB angles revealed greater inversion at foot strike followed by greater eversion at MaxFz for IRU compared to IRD (p=0.042 and p=0.018, respectively). For the FF/HF angle, maximum eversion was greater during IRD than LR (p=0.035). Data suggests that running on cross-slopes can induce substantial intra-foot kinematic adaptations, whether this represents a risk of injury to both recreational and professional runners remains to be determined.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gaitpost.2011.02.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!