The substituted benzylpiperazines, 3,4-methylenedioxybenzylpiperazine (3,4-MDBP), its regioisomer 2,3-methylenedioxybenzylpiperazine (2,3-MDBP) and four isobaric ring substituted methoxymethylbenzylpiperazines (MMBP) have almost identical mass spectra. Perfluoroacylation of the secondary amine nitrogen of these isomeric piperazines gave mass spectra with differences in relative abundance of some fragment ions. However, the spectra did not yield any unique fragments for specific identification of one isomer to the exclusion of the other compounds. Gas chromatography coupled with infrared detection (GC-IRD) provides direct confirmatory data for the structural differentiation between the six isomers. The mass spectra in combination with the vapor phase infrared spectra provide for specific confirmation of each of the isomeric piperazines. The underivatized and perfluoroacyl derivative forms of the ring substituted benzylpiperazines were resolved on the polar stationary phase Rtx-200.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.forsciint.2011.02.018DOI Listing

Publication Analysis

Top Keywords

mass spectra
12
substituted benzylpiperazines
8
ring substituted
8
isomeric piperazines
8
spectra
5
differentiation methylenedioxybenzylpiperazines
4
methylenedioxybenzylpiperazines mdbps
4
mdbps methoxymethylbenzylpiperazines
4
methoxymethylbenzylpiperazines mmbps
4
mmbps gc-ird
4

Similar Publications

Electronic circular dichroism (ECD) spectra contain key information about molecular chirality by discriminating the absolute configurations of chiral molecules, which is crucial in asymmetric organic synthesis and the drug industry. However, existing predictive approaches lack the consideration of ECD spectra owing to the data scarcity and the limited interpretability to achieve trustworthy prediction. Here we establish a large-scale dataset for chiral molecular ECD spectra and propose ECDFormer for accurate and interpretable ECD spectrum prediction.

View Article and Find Full Text PDF

Proteo-SAFARI is a shiny application for fragment assignment by relative isotopes, an R-based software application designed for identification of protein fragment ions directly in the / domain. This program provides an open-source, user-friendly application for identification of fragment ions from a candidate protein sequence with support for custom covalent modifications and various visualizations of identified fragments. Additionally, Proteo-SAFARI includes a nonnegative least-squares fitting approach to determine the contributions of various hydrogen shifted fragment ions ( + 1, + 1, - 1, - 2) observed in UVPD mass spectra which exhibit overlapping isotopic distributions.

View Article and Find Full Text PDF

Background: The microtubule-associated Tau gene (MAPT) undergoes alternative splicing to produce isoforms with varying combinations of microtubule-binding region (MTBR) repeats (3R, 4R). The MTBR is the predominant region that forms paired helical filaments and neurofibrillary tangles fibrils in disease. Alzheimer's disease (AD) is a mixed Tauopathy containing both 3R and 4R isoforms.

View Article and Find Full Text PDF

Background: Bile acids (BA) are steroids regulating nutrient absorption, energy metabolism, and mitochondrial function, and serve as important signaling molecules with a role in the gut-brain axis. The composition of BAs in humans changes with diet type and health status, which is well documented with a few known bile acids. In this study, we leveraged a new BA-specific spectral library curated in the Dorrestein lab at UCSD to expand the pool of detected BAs in Alzheimer-related LC-MS/MS datasets and provide links to dietary profiles and AD markers.

View Article and Find Full Text PDF

Background: Although amyloid deposition in brain is one of the hallmark pathological features of Alzheimer's disease (AD), the upstream events and its molecular environment in AD brain remain largely unknown. Recent advances in analytical methods such as mass spectrometry can provide the cutting-edge tools to unveil the AD pathogenesis at molecular and atomic level.

Method: In order to gain the comprehensive information about AD pathology at molecular level, postmortem brain sections of AD patients were analyzed by the hybrid molecular imaging methods composed of the conventional histological analyses, matrix assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) for small molecules, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) imaging for metals, and particle induced X-ray emission (PIXE) imaging for elements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!