Rationale And Objectives: The purpose of this study was to design an optimized heart rate (HR)-dependent electrocardiogram (ECG) pulsing protocol for computed tomography coronary angiography (CTCA) on a 256-slice CT scanner and to assess its potential dose reduction retrospectively, based on the retrospective ECG gating data without dose modulation.

Materials And Methods: A total of 137 patients were enrolled to perform CTCA with a 256-slice scanner. Two independent radiologists graded image quality of coronary artery segments (1 = excellent, no motion artifacts; 4 = poor, severe motion artifacts) to define optimal reconstruction window in end-systolic phase, mid-diastolic phase, and the combination of both cardiac phases. According to statistical analysis for HR against image quality, four HR-depended ECG-pulsing protocols were proposed. We also demonstrated the potential dose reduction of the proposed technique.

Results: For patients with HR <59 beats/min (group 1), 60-72 beats/min (group 2), 73-84 beats/min (group 3), and >85 beats/min (group 4), the optimal reconstruction windows were at 74.1-81.3%, 73.4-82.2%, 38.3-82.3%, and 37.2-61.6% of R-R interval, respectively. The ECG-pulsing protocols with minimal radiation dose (ie, no tube current outside the pulsing window) can reduce the effective dose of CTCA by 79.5%, 75.7%, 38.3%, and 57.4% for HR groups 1 to 4, respectively. The corresponding results for reducing tube current by 80% outside the pulsing window were 63.7%, 56.6%, 32.0%, and 46.0%.

Conclusion: Through the optimization of ECG-pulsed tube-current modulation, radiation exposure can be greatly reduced, especially in patients with HR <72 beats/min or >85 beats/min.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.acra.2011.01.028DOI Listing

Publication Analysis

Top Keywords

potential dose
12
dose reduction
12
tube current
12
coronary angiography
8
ctca 256-slice
8
256-slice scanner
8
image quality
8
motion artifacts
8
optimal reconstruction
8
ecg-pulsing protocols
8

Similar Publications

Background: Atopic dermatitis (AD) is a chronic inflammatory skin disease, characterized by eczematous skin lesions and pruritus. There is an unmet need for effective first-line systemic therapies with good safety profiles, particularly oral medications. Orismilast is a novel first-in-class oral phosphodiesterase-4 (PDE4) B/D inhibitor under investigation for the treatment of moderate-to-severe AD.

View Article and Find Full Text PDF

Objectives: Urticarial vasculitis (UV) is characterized by atypical urticarial lesions and leukocytoclastic vasculitis, sometimes with extracutaneous manifestations. First-line treatment is based on colchicine, hydroxychloroquine, dapsone or low-dose glucocorticoids. In refractory forms, the use of biologics has been anecdotally described as potentially effective.

View Article and Find Full Text PDF

Discovery of Novel Hydrazide-Based HDAC3 Inhibitors as Epigenetic Immunomodulators for Cancer Immunotherapy.

J Med Chem

January 2025

Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.

Based on our previous work, a series of imidazole-based small molecules were designed and synthesized as HDAC3 inhibitors. Among them, compound showed selective HDAC3 inhibition activity with an IC of 53 nM (SI = 75 for HDAC3 over HDAC1). Further studies revealed that could dose-dependently induce the expression of PD-L1 in MC38 cells by activating the PD-L1 transcription.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) is a highly expressed driver of many cancers, yet the utility of EGFR inhibitors is limited to cancers that harbor sensitizing mutations in the EGFR gene due to dose limiting toxicities. Rather than conventionally blocking the kinase activity of EGFR, we sought to reduce its transcription as an alternative approach to broaden the therapeutic window for EGFR inhibitors targeting wildtype or mutant EGFR. We found that YES1 is highly expressed in triple negative breast cancer (TNBC) and drives cell growth by elevating EGFR levels.

View Article and Find Full Text PDF

Background: Water retention, ultrafiltration insufficiency, and metabolic complications due to abnormally high glucose concentrations are still common problems in patients treated with peritoneal dialysis. Phloretin, a nonselective inhibitor of facilitative glucose transporter channels (GLUT), has shown to improve water transport and lower glucose absorption in experimental peritoneal dialysis. However, the dose-response relationship remains unknown, and we therefore performed a dose-response study to elucidate the pharmacodynamic properties of intra-peritoneal phloretin therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!