In this paper, the diffusion of solutes in natural clay from a concentrated solution consisting primarily of ammonium, sodium and chloride ions at a pH level of 8 was studied and was based on an existing 20-year-old landfill. Contaminant transport through clay liners was predicted using transport and reaction geochemical codes to help explain the experimental data. The model predicted the chloride anion diffusion and cation exchange processes for three different experiments: (1) small-scale interactions in compacted clay, (2) 1:1 European Union (EU) Directive demonstration experiments (0.5-m-thick clay barrier), and (3) analysis of a bore hole with core recovery drilled in an old landfill located above a similar type of clay as that studied in (1) and (2). Orders of magnitude between 10(-10) and 10(-9) m(2) s(-1) were used for the apparent diffusion coefficient to fit the chloride profiles at the different scales; however, at larger space and time scales, diffusion was retarded due to the presence of more consolidated, non-mechanically disturbed clay materials at large depths in a natural clay-rock emplacement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2011.02.014 | DOI Listing |
Sci Total Environ
January 2025
Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan; Isotope Science Center, The University of Tokyo, Bunkyo, Tokyo 113-0032, Japan. Electronic address:
The adsorption reaction on clay minerals is crucial for understanding the environmental behavior of various cations, including cesium (Cs). However, its details remain unclear because of multiple adsorption sites of the clay minerals, a significant difference between concentrations in the atomic-scale experiments and the actual environment, and difficulties of evaluating bonding states of the adsorbed cations. It is expected that systematic experiments at the atomic-scale with a wide concentration range and application of density functional theory (DFT) calculations overcome the problems and bring crucial insights to link laboratory experiment results with environmental sample analysis.
View Article and Find Full Text PDFMolecules
January 2025
Instituto Andaluz de Ciencias de la Tierra (IACT-CSIC), Consejo Superior de Investigaciones Científicas, Av. de las Palmeras 4, 18100 Armilla, Granada, Spain.
Many properties of 2,4-dichlorophenoxyacetic acid (2,4-D) depend on its molecular environment, such as whether it is an isolated molecule, a dimer, or in a crystalline state. The molecular geometry, conformational analysis, and vibrational spectrum of 2,4-D were theoretically calculated using Density Functional Theory (DFT) methods. A new slightly more stable conformer was found, which is different to those previously reported.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Civil Engineering and Management, Faculty of Civil Engineering, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania.
The objective of this paper is to analyze the characteristics of twelve compositions based on hemp shiv and four traditional binders used in the construction industry: cement, plaster, hydrated lime and clay, with the aim of using the resulting materials as final finishing products applicable to the raw area of walls, slabs and other construction elements for walls. Comparative, cost and multi-criteria analyses were carried out on the proposed compositions. The comparative analysis focused on acoustic, thermal, mechanical and fire characteristics, followed by a cost analysis and ending with multi-criteria analysis.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Physics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 94901 Nitra, Slovakia.
Experimental studies have shown that osmosis could be one of the mechanisms of water transport in porous materials that act, to a certain extent, as semipermeable membranes. In this paper, an experimental apparatus and the corresponding model to measure and determine the osmotic efficiency, , of bulk porous materials are described. Both the apparatus and model to interpret water transport in samples are modifications of those of Sherwood and Craster.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China.
The escalating discharge of textile wastewater with plenty of dye and salt has resulted in serious environmental risks. Membranes assembled from two-dimensional (2D) nanomaterials with many tunable interlayer spacings are promising materials for dye/salt separation. However, the narrow layer spacing and tortuous interlayer transport channels of 2D-material-based membranes limit the processing capacity and the permeability of small salt ions for efficient dye/salt separation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!