Stabilisation/solidification (S/S) is an effective technique for reducing the leachability of contaminants in soils. Very few studies have investigated the use of ground granulated blast furnace slag (GGBS) for S/S treatment of contaminated soils, although it has been shown to be effective in ground improvement. This study sought to investigate the potential of GGBS activated by cement and lime for S/S treatment of a mixed contaminated soil. A sandy soil spiked with 3000mg/kg each of a cocktail of heavy metals (Cd, Ni, Zn, Cu and Pb) and 10,000mg/kg of diesel was treated with binder blends of one part hydrated lime to four parts GGBS (lime-slag), and one part cement to nine parts GGBS (slag-cement). Three binder dosages, 5, 10 and 20% (m/m) were used and contaminated soil-cement samples were compacted to their optimum water contents. The effectiveness of the treatment was assessed using unconfined compressive strength (UCS), permeability and acid neutralisation capacity (ANC) tests with determination of contaminant leachability at the different acid additions. UCS values of up to 800kPa were recorded at 28days. The lowest coefficient of permeability recorded was 5×10(-9)m/s. With up to 20% binder dosage, the leachability of the contaminants was reduced to meet relevant environmental quality standards and landfill waste acceptance criteria. The pH-dependent leachability of the metals decreased over time. The results show that GGBS activated by cement and lime would be effective in reducing the leachability of contaminants in contaminated soils.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2011.02.037DOI Listing

Publication Analysis

Top Keywords

leachability contaminants
12
contaminated soil
8
reducing leachability
8
s/s treatment
8
contaminated soils
8
ggbs activated
8
activated cement
8
cement lime
8
parts ggbs
8
contaminated
5

Similar Publications

A toolbox for early detection of glass delamination in vials.

Int J Pharm

January 2025

Drug Product and Device Technologies, BioMarin Pharmaceutical, Inc, Novato, CA 94949, USA.

Glass delamination is a gradual process that may not become apparent until late in storage. Over the past three decades, it has been a leading cause of drug product recalls due to glass particulate contamination. The appearance of glass particles in the solution marks the final stage of glass delamination.

View Article and Find Full Text PDF

At present, contamination due to toxic metals is a global concern. The management of problems caused by heavy metals relies on stabilization/solidification, which is the most effective technique for the control of metal pollution in soil. This study examined the immobilization efficiency of various phosphate-based binders (NaPO, NaHPO, NaHPO), in addition to ordinary Portland cement (OPC), MgO, and CaO, for the stabilization of multi-metal-contaminated soils.

View Article and Find Full Text PDF

Heavy metal contamination is a critical factor contributing to soil degradation and poses significant environmental threats with profound implications for ecosystems and human health. Soil amendments have become an effective strategy to address these challenges by reducing heavy metal hazards and remediating contaminated soils. This review offers a comprehensive analysis of recent advancements in soil amendments for heavy metal-contaminated soils, with a focus on natural, synthetic, natural-synthetic copolymer, and biological amendments.

View Article and Find Full Text PDF

Due to its structure and properties, diatomite from a deposit in Jawornik Ruski (Subcarpathian Voivodeship) can be used as a sorbent in rain gardens. The purpose of the current research is to analyze how enriching the substrate used in a rain garden with diatomite can affect the removal of biogenic pollutants. This study was carried out under laboratory conditions using retention columns, two experimental columns with different contents of diatomite, and a control column without the addition of diatomite.

View Article and Find Full Text PDF

Environmental impact of an acid-forming alum shale waste rock legacy site in Norway.

Environ Sci Process Impacts

January 2025

Environmental Chemistry Section, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway.

Alum shale formations in Scandinavia are generally enriched in uranium (U) and, when exposed to air and water, may produce acidic rock drainage (ARD), releasing potentially harmful elements into the environment. Taraldrud is a legacy site in southeast Norway where approx. 51 000 m of alum shale was deposited in the 1980s-1990s.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!