A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Shear stress activation of nitric oxide synthase and increased nitric oxide levels in human red blood cells. | LitMetric

Red blood cells (RBC) play an important role in the balance between generation and scavenging of nitric oxide (NO) and hence its local bioavailability and influence on vasomotor control. Previous studies have reported increased NO levels in RBC suspensions subsequent to exposure to shear forces; the present study was designed to further investigate changes in intracellular NO concentration and possible mechanisms involved for RBC exposed to well-controlled shear forces. Attached human RBC were subjected to shear stresses up to 0.1Pa in a parallel-plate flow channel; fluorescent methods were used to monitor changes in intracellular NO and calcium concentrations. Intracellular NO concentration, estimated by the fluorescence level of 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM), increased sharply within 30s following the application of shear stress between 0.013 and 0.1Pa. This increase was only partially prevented by the absence of l-arginine and by the presence of l-N-acetyl-methyl-arginine (L-NAME), strongly suggesting that this response was in part related to the activation of NO-synthase (NOS) enzyme. The increase in intracellular NO concentration under shear stress was also inhibited by calcium chelation in the suspending medium, indicating the role of calcium entry for NOS activation. Increases of intracellular calcium concentrations under the same shearing conditions were demonstrated by monitoring Fluo-3/AM fluorescence in RBC exposed to shear stress. Serine 1177 phosphorylated NOS protein, the activated form of the enzyme determined by immunohistochemistry, was found to be significantly increased following the exposure of RBC to 0.1Pa shear stress for 1min. These data confirm that RBC possess a NOS enzyme that is actively synthesizing NO and activated by effective shear forces. The data also suggest that there may be additional (e.g., non-enzymatic) NO generating mechanisms in RBC that are also enhanced under shear stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3101311PMC
http://dx.doi.org/10.1016/j.niox.2011.03.003DOI Listing

Publication Analysis

Top Keywords

shear stress
24
nitric oxide
12
shear forces
12
intracellular concentration
12
shear
10
red blood
8
blood cells
8
rbc
8
changes intracellular
8
rbc exposed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!