An understanding of heart development is critical in any systems biology approach to cardiovascular disease. The interpretation of data generated from high-throughput technologies (such as microarray and proteomics) is also essential to this approach. However, characterizing the role of genes in the processes underlying heart development and cardiovascular disease involves the non-trivial task of data analysis and integration of previous knowledge. The Gene Ontology (GO) Consortium provides structured controlled biological vocabularies that are used to summarize previous functional knowledge for gene products across all species. One aspect of GO describes biological processes, such as development and signaling. In order to support high-throughput cardiovascular research, we have initiated an effort to fully describe heart development in GO; expanding the number of GO terms describing heart development from 12 to over 280. This new ontology describes heart morphogenesis, the differentiation of specific cardiac cell types, and the involvement of signaling pathways in heart development. This work also aligns GO with the current views of the heart development research community and its representation in the literature. This extension of GO allows gene product annotators to comprehensively capture the genetic program leading to the developmental progression of the heart. This will enable users to integrate heart development data across species, resulting in the comprehensive retrieval of information about this subject. The revised GO structure, combined with gene product annotations, should improve the interpretation of data from high-throughput methods in a variety of cardiovascular research areas, including heart development, congenital cardiac disease, and cardiac stem cell research. Additionally, we invite the heart development community to contribute to the expansion of this important dataset for the benefit of future research in this area.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3302178 | PMC |
http://dx.doi.org/10.1016/j.ydbio.2011.03.011 | DOI Listing |
Diabetes
January 2025
Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada.
Cancer survivors have an increased risk of developing Type 2 diabetes compared to the general population. Patients treated with cisplatin, a common chemotherapeutic agent, are more likely to develop metabolic syndrome and Type 2 diabetes than age- and sex-matched controls. Surprisingly, the impact of cisplatin on pancreatic islets has not been reported.
View Article and Find Full Text PDFJAMA Netw Open
January 2025
Department of Radiology, Keio University School of Medicine, Tokyo, Japan.
Importance: The integration of patient-reported outcome (PRO) assessments in cardiovascular care has encountered considerable obstacles despite their established clinical relevance.
Objective: To assess the impact of a physician- and patient-friendly electronic PRO (ePRO) monitoring system on the quality of cardiovascular care in clinical practice.
Design, Setting, And Participants: This open-label, multicenter, pilot randomized clinical trial was phase 2 of a multiphase study that was conducted from October 2022 to October 2023 and focused on the implementation and evaluation of an ePRO monitoring system in outpatient clinics in Japan.
Brain Inform
January 2025
Department of Computing, Glasgow Caledonian University, Glasgow, G4 0BA, Scotland.
A digital twin is a virtual model of a real-world system that updates in real-time. In healthcare, digital twins are gaining popularity for monitoring activities like diet, physical activity, and sleep. However, their application in predicting serious conditions such as heart attacks, brain strokes and cancers remains under investigation, with current research showing limited accuracy in such predictions.
View Article and Find Full Text PDFPediatr Cardiol
January 2025
The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA.
The C3PO collaborative, with a history of successful quality improvement (QI) initiatives, leveraged registry participants to develop a multi-center QI initiative to reduce adverse events (AEs) in congenital cardiac catheterization. A 32-person, interdisciplinary working group analyzed audited data for all congenital cardiac catheterization cases from 2014-2017. The primary outcome was the occurrence of any high-severity (level 3/4/5) AE.
View Article and Find Full Text PDFPhysiol Res
December 2024
Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
Myocardial remodelling involves structural and functional changes in the heart, potentially leading to heart failure. The deoxycorticosterone acetate (DOCA)/salt model is a widely used experimental approach to study hypertension-induced cardiac remodelling. It allows to investigate the mechanisms underlying myocardial fibrosis and hypertrophy, which are key contributors to impaired cardiac function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!