Marine Crenarchaeota are among the most abundant groups of prokaryotes in the ocean and recent reports suggest that they oxidize ammonia as an energy source and inorganic carbon as carbon source, while other studies indicate that Crenarchaeota use organic carbon and hence, live heterotrophically. We used catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) to determine the crenarchaeal and bacterial contribution to total prokaryotic abundance in the (sub)tropical Atlantic. Bacteria contributed ~ 50% to total prokaryotes throughout the water column. Marine Crenarchaeota Group I (MCGI) accounted for ~ 5% of the prokaryotes in subsurface waters (100 m depth) and between 10 and 20% in the oxygen minimum layer (250-500 m depth) and deep waters (North East Atlantic Deep Water). The fraction of both MCGI and Bacteria fixing inorganic carbon, determined by combining microautoradiography with CARD-FISH (MICRO-CARD-FISH), decreased with depth, ranging from ~ 30% in the oxygen minimum zone to < 10% in the intermediate waters (Mediterranean Sea Outflow Water, Antarctic Intermediate Water). In the deeper water masses, however, MCGI were not taking up inorganic carbon. Using quantitative MICRO-CARD-FISH to determine autotrophy activity on a single cell level revealed that MCGI are incorporating inorganic carbon (0.002-0.1 fmol C cell⁻¹ day⁻¹) at a significantly lower rate than Bacteria (0.01-0.6 fmol C cell⁻¹ day⁻¹). Hence, it appears that MCGI contribute substantially less to autotrophy than Bacteria. Taking the stoichiometry of nitrification together with our findings suggests that MCGI might not dominate the ammonia oxidation step in the mesopelagic waters of the ocean to that extent as the reported dominance of archaeal over bacterial amoA would suggest.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1462-2920.2011.02457.xDOI Listing

Publication Analysis

Top Keywords

inorganic carbon
16
marine crenarchaeota
8
oxygen minimum
8
fmol cell⁻¹
8
cell⁻¹ day⁻¹
8
carbon
6
mcgi
6
bacteria
5
water
5
contribution crenarchaeota
4

Similar Publications

Boriranes, highly strained three-membered cyclic organoboron heterocycles, have emerged as potential synthons for the synthesis of many organoboron species. However, the synthesis of boriranes with tricoordinate, sp-hybridised boron and tetracoordinate, sp-hybridised carbon atoms is very challenging owing to their high Lewis acidity. Herein we describe the isolation of base-free triaminoboriranes from the room-temperature reaction of diaminoalkynes with an aminodistannylborane.

View Article and Find Full Text PDF

Unraveling the interaction of dissolved organic matter and microorganisms with internal phosphorus cycling in the floodplain lake ecosystem.

Environ Res

January 2025

College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, P.R. China. Electronic address:

Internal nutrient cycling, especially phosphorus (P), is of great influence in lake eutrophication. Dissolved organic matter (DOM) and microorganisms are ubiquitous in the sediments and closely associated with P-cycling. However, the underlying interactions of DOM, microorganisms and P in floodplain lake area with different hydrological characteristics remain scarce.

View Article and Find Full Text PDF

A green facile method was developed to synthesize the carbon quantum dots from barberry, a native plant, as a new carbon source. The synthesis strategy is a simple one-step hydrothermal process without requiring hazardous chemical reagents. The spherical structure of b-CDs with an average particle size of 3.

View Article and Find Full Text PDF

Carbon dioxide, global boiling, and climate carnage, from generation to assimilation, photocatalytic conversion to renewable fuels, and mechanism.

Sci Total Environ

January 2025

Program in Environmental and Polymer Engineering, Graduate School of INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; Department of Environmental Engineering, INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea. Electronic address:

The increasing CO concentration in the atmosphere has substantial impacts on the global temperature. For energy sustainability and minimization of the effects of global warming, an approach to understand CO capturing and a carbon neutral culture is extremely essential in the present circumstances. The CO emission from vehicles and industries can be minimized using energy cost-effective techniques and can be converted more selectively into reusable fuels via thermochemical, electrochemical, photochemical, photocatalytic, electrocatalytic, biological and inorganic carbonate-based approaches.

View Article and Find Full Text PDF

Named reaction in carbohydrate chemistry: A review.

Carbohydr Res

January 2025

Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi, 110025, India. Electronic address:

Central to the synthetic organic chemist's armoury are the organic/inorganic reagents which are employed to effect a broad range of structural changes. Herein, we report a collection of 29 organic named reactions applicable in the carbohydrate chemistry, arranged in alphabetical order. In this contribution, we have displayed general schemes, examples and probable reaction mechanism for each chemical reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!