Coupling of various 4-substituted phenyl azides with two distinct quinone-containing N-heterocyclic carbenes (NHCs) afforded the respective mono- and ditopic 1,3-disubstituted acyclic triazenes in moderate to excellent yields (38-92%). Depending on their pendant substituents (derived from the azides), the acyclic triazenes exhibited intense absorptions in the visible spectrum (359-428 nm), which were bathochromically shifted by up to Δλ=68 nm upon reduction of the quinone moiety on the component derived from the NHC. Cyclic voltammetry confirmed that the aforementioned redox processes were reversible, and a related set of UV-vis spectroelectrochemical experiments revealed that bulk electrolysis may also be used to switch reversibly the colors exhibited by these triazenes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo200139f | DOI Listing |
Chem Commun (Camb)
August 2017
Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China.
An acyclic cucurbit[n]uril (CB[n]) conjugated dextran is developed as a new biomaterial for drug delivery and bioimaging. This biomaterial retains the host-guest recognition properties of acyclic CB[n]s. It is able to directly encapsulate anti-tumor drugs 5-fluorouracil and temozolomide.
View Article and Find Full Text PDFAcc Chem Res
July 2014
Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20742, United States.
Conspectus This Account focuses on stimuli responsive systems that function in aqueous solution using examples drawn from the work of the Isaacs group using cucurbit[n]uril (CB[n]) molecular containers as key recognition elements. Our entry into the area of stimuli responsive systems began with the preparation of glycoluril derived molecular clips that efficiently distinguish between self and nonself by H-bonds and π-π interactions even within complex mixtures and therefore undergo self-sorting. We concluded that the selectivity of a wide variety of H-bonded supramolecular assemblies was higher than previously appreciated and that self-sorting is not exceptional behavior.
View Article and Find Full Text PDFJ Phys Chem A
May 2012
Theoretical & Computational Chemistry Laboratory, School of Chemistry, Bharathidasan University, Tiruchirappalli-620024, India.
Triazenes are a unique class of polyazo compounds containing three consecutive nitrogen atoms in an acyclic arrangement and are promising NLO candidates. In the present work, a series of 15 donor-π-acceptor type vinyl coupled triazene derivatives (VCTDs) with different acceptors (-NO(2), -CN, and -COOH) have been designed, and their structure, nonlinear response, and optoelectronic properties have been studied using density functional theory and time-dependent density functional theory methods. B3LYP/6-311g(d,p) optimized geometries of the designed candidates show delocalization from the acceptor to donor through a π-bridge.
View Article and Find Full Text PDFJ Org Chem
May 2011
Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712, USA.
Coupling of various 4-substituted phenyl azides with two distinct quinone-containing N-heterocyclic carbenes (NHCs) afforded the respective mono- and ditopic 1,3-disubstituted acyclic triazenes in moderate to excellent yields (38-92%). Depending on their pendant substituents (derived from the azides), the acyclic triazenes exhibited intense absorptions in the visible spectrum (359-428 nm), which were bathochromically shifted by up to Δλ=68 nm upon reduction of the quinone moiety on the component derived from the NHC. Cyclic voltammetry confirmed that the aforementioned redox processes were reversible, and a related set of UV-vis spectroelectrochemical experiments revealed that bulk electrolysis may also be used to switch reversibly the colors exhibited by these triazenes.
View Article and Find Full Text PDFInteraction of 5-diazoimidazole-4-carboxamide and alkyl and aryl isocyanates in the dark affords 8-carbamoyl-3-substituted-imidazo[5,1-d]-1,2,3,5-tetrazin-4(3H)-on es. In cold methanol or ethanol, the 3-(2-chloroethyl) derivative 7a decomposes to afford 2-azahypoxanthine (14) and methyl and ethyl N-(2-chloroethyl)carbamates, respectively. Compound 7a has curative activity against L-1210 and P388 leukemia and may act as a prodrug modification of the acyclic triazene 5-[3-(2-chloroethyl)triazen-1-yl]imidazole-4-carboxamide (MCTIC), since it ring opens to form the triazene in aqueous sodium carbonate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!