Surfactant-free gelatin/heptamolybdate (HM) hybrid nanoparticles are prepared by a simple and environmentally friendly approach utilizing the electrostatic interaction between anionic HM and the zwitterionic gelatin. The obtained nanoparticles have a tunable size and very high HM loading content up to about 70%. In vitro and in vivo experiments prove that the gelatin/HM hybrid nanoparticles exhibit significantly better antitumor activity than plain ammonium heptamolybdate solution. Therefore, the gelatin/HM hybrid nanoparticles reported here may serve as a prototype platform for polymer/polyoxometalate (POM) hybrid nanoparticles as cancer treatment agents and hence open up more opportunities to maximize the potential of POM-based pharmaceutical agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mabi.201000434 | DOI Listing |
Pharmaceutics
January 2025
Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy.
: Following tooth extraction, resveratrol (RSV) can support healing by reducing inflammation and microbial risks, though its poor solubility limits its effectiveness. This study aims to develop a solid nanocomposite by embedding RSV in lipid nanoparticles (mLNP) within a hydrophilic matrix, to the scope of improving local delivery and enhancing healing. Hydroxyapatite (HXA), often used as a bone substitute, was added to prevent post-extraction alveolus volume reduction.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Jožef Stefan Institute, Department of Physical and Organic Chemistry, Jamova c. 39, SI-1000 Ljubljana, Slovenia.
The study aimed to develop a superhydrophobic coating on the aluminium alloy 2024-T3 surface. The desired surface roughness and low surface energy were achieved with SiO nanoparticles, synthesised via the Stöber method and modified with alkyl silane (AS) or perfluoroalkyl silane (FAS). To enhance particle adhesion to the alloy substrate, nanoparticles were incorporated into a hybrid sol-gel coating composed of tetraethyl orthosilicate, methyl methacrylate, and 3-methacryloxypropyl trimethoxysilane.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Faculty of Mechanical Engineering, Technical University of Liberec, 461 17 Liberec, Czech Republic.
The objective of the present work was to prepare hybrid epoxy composites with improved mechanical and thermal properties. The simultaneous use of two different modifiers in an epoxy resin was motivated by the expected occurrence of synergistic effects on the performance properties of the matrix. Such a hybrid composite can be used in more severe conditions and/or in broader application areas.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
Novel ferrite/polyurethane nanocomposites were synthesized using the in situ polymerization method after the addition of different spinel nanoferrite particles (copper, zinc, and copper-zinc) and examined as potential coatings for medical devices and implants in vascular tissue engineering. The influence of the nanoferrite type on the structure and functional characteristics of the polyurethane composites was investigated by FTIR, SWAXS, AFM, TGA, DSC, nanoindentation, swelling behavior, water contact angle, and water absorption measurements. Biocompatibility was evaluated by examining the cytotoxicity and adhesion of human endothelial cells and fibroblasts onto prepared composites and performing a protein adsorption test.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Engineering and Materials Science and Transportation, University of Seville, 41092 Seville, Spain.
The necessity to mitigate the intrinsic issues associated with tissue or organ transplants, in order to address the rising prevalence of diseases attributable to increased life expectancy, provides a rationale for the pursuit of innovation in the field of biomaterials. Specifically, biopolymeric aerogels represent a significant advancement in the field of tissue engineering, offering a promising solution for the formation of temporary porous matrices that can replace damaged tissues. However, the functional characteristics of these materials are inadequate, necessitating the implementation of matrix reinforcement methods to enhance their performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!