Mimicking enzymes with alternative molecules represents an important objective in synthetic biology, aimed to obtain new chemical entities for specific applications. This objective is hampered by the large size and complexity of enzymes. The manipulation of their structures often leads to a reduction of enzyme activity. Herein, we describe the spectroscopic and functional characterization of Fe(III)-mimochrome VI, a 3.5 kDa synthetic heme-protein model, which displays a peroxidase-like catalytic activity. By the use of hydrogen peroxide, Fe(III)-mimochrome VI efficiently catalyzes the oxidation of several substrates, with a typical Michaelis-Menten mechanism and with several multiple turnovers. The catalytic efficiency of Fe(III)-mimochrome VI in the oxidation of 2,2'-azino-di(3-ethyl-benzothiazoline-6-sulfonic acid (ABTS) and guaiacol (k(cat)/K(m)=4417 and 870 mM(-1) s(-1), respectively) is comparable to that of native horseradish peroxidase (HRP, k(cat)/K(m)=5125 and 500 mM(-1) s(-1), respectively). Fe(III)-mimochrome VI also converts phenol to 4- and 2-nitrophenol in the presence of NO(2) (-) and H(2) O(2) in high yields. These results demonstrate that small synthetic peptides can impart high enzyme activities to metal cofactors, and anticipate the possibility of constructing new biocatalysts tailored to specific functions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201003485DOI Listing

Publication Analysis

Top Keywords

mm-1 s-1
8
heme-peptide metalloenzyme
4
metalloenzyme mimetic
4
mimetic natural
4
natural peroxidase-like
4
peroxidase-like activity
4
activity mimicking
4
mimicking enzymes
4
enzymes alternative
4
alternative molecules
4

Similar Publications

PEGylated Ultrasmall Iron Oxide Nanoparticles as MRI Contrast Agents for Vascular Imaging and Real-Time Monitoring.

ACS Nano

January 2025

Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China.

Accurate imaging evaluations of pre- and post-treatment of cardiovascular diseases are pivotal for effective clinical interventions and improved patient outcomes. However, current imaging methods lack real-time monitoring capabilities with a high contrast and resolution during treatments. This study introduces PEGylated ultrasmall iron oxide nanoparticles (PUSIONPs), which have undergone comprehensive safety evaluations, boasting an value of 6.

View Article and Find Full Text PDF

Dendrimer-Mediated Generation of a Metal-Phenolic Network for Antibody Delivery to Elicit Improved Tumor Chemo/Chemodynamic/Immune Therapy.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.

To simplify the composition and improve the efficacy of metal-phenolic network (MPN)-based nanomedicine, herein, we designed an MPN platform to deliver programmed death ligand-1 (PD-L1) antibody (anti-PD-L1) for combined tumor chemo/chemodynamic/immune therapy. Here, generation 5 poly(amidoamine) dendrimers conjugated with gossypol (Gos) through boronic ester bonds were used as a synthetic polyphenol to coordinate Mn, and then complexed with anti-PD-L1 to obtain the nanocomplexes (for short, DPGMA). The prepared DPGMA exhibited good water dispersibility with a hydrodynamic size of 166.

View Article and Find Full Text PDF

Rapeseed meal (RSM), a protein-rich byproduct, holds potential as a high-quality animal feed, but nitrile compounds derived from glucosinolates (GSLs) in RSM pose a toxicity risk. Nitrilases, enzymes that hydrolyze toxic nitriles to carboxylic acids, offer a potential solution for detoxification. However, the low thermal stability of nitrilases restricts their industrial applicability.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates a new cancer treatment system called Chit-IOCO-MTX-Cy5, which combines chitosan nanocomposites with cerium oxide and iron oxide nanoparticles, along with methotrexate and a dye for imaging.
  • The system acts as both an anti-cancer agent and enhances MRI imaging, showing high effectiveness with better results than currently approved imaging agents.
  • It significantly reduces tumor growth with no regrowth after treatment, while showing good safety in mice, indicating its potential as an effective cancer theranostic tool.
View Article and Find Full Text PDF

Cloning, purification and characterization of a novel thermostable recombinant tannase from Galactobacillus timonensis.

Enzyme Microb Technol

December 2024

State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, China.

The exorbitant production costs associated with natural tannases pose a significant challenge to their widespread industrial utilization. Microbial expression systems provide a cost-effective method for enzyme production. In this study, a putative gene encoding the subtype B tannase (Gt-Tan) was cloned from Galactobacillus timonensis and expressed heterologously in Escherichia coli BL21 (DE3) cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!